Skip to main content
Log in

Applications of ferroelectrics in photovoltaic devices

铁电光伏的应用

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Ferroelectric materials exhibiting anomalous photovoltaic properties are one of the foci of photovoltaic research. We review the foundations and recent progress in ferroelectric materials for photovoltaic applications, including the physics of ferroelectricity, nature of ferroelectric thin films, characteristics and underlying mechanism of the ferroelectric photovoltaic effect, solar cells based on ferroelectric materials, and other related topics. These findings have important implications for improving the efficiency of photovoltaic cells.

摘要

具有反常光伏效应的铁电材料是光伏研究的重点之一. 本文综述了铁电材料在光伏应用中的研究进展, 包括铁电性的物理基础、铁电薄膜的性质、铁电光伏效应的特点和内在机制、铁电材料太阳电池等. 这些发现对于进一步提高光伏电池的效率具有重要意义.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao P, Bian L, Wang L, et al. Enhanced open voltage of BiFeO3 polycrystalline film by surface modification of organolead halide perovskite. Appl Phys Lett, 2014, 105: 013901

    Article  Google Scholar 

  2. Glunz SW, Feldmann F, Richter A, et al. The irresistible charm of a simple current flow pattern—25% with a solar cell featuring a full-area back contact. 31st European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 2015: 259–263

    Google Scholar 

  3. Ding JN, Chen MJ, Qiu JH, et al. Photovoltaic properties of ferroelectric solar cells based on polycrystalline BiFeO3 films sputtered on indium tin oxide substrates. Sci China-Phys Mech Astron, 2015, 58: 1–6

    Google Scholar 

  4. Jiang GL, Chen WJ, Zheng Y. Simulation study of domain structure evolution in ferroelectric thin film under bending mechanical loads. Sci Sin-Phys Mech Astron, 2016, 46: 044613

    Article  Google Scholar 

  5. Zhang Y. Recent developments related to multifunctional ferroelectric for room-temperature applications. Sci China Technol Sci, 2016, 59: 513–514

    Article  Google Scholar 

  6. Si WZ, Huang KK, Wu XF, et al. Epitaxial thin film of SmFeO3 ferroelectric heterostructures. Sci China Chem, 2014, 57: 803–806

    Article  Google Scholar 

  7. Brody PS, Crowne F. Mechanism for the high voltage photovoltaic effect in ceramic ferroelectrics. J Electron Mater, 1975, 4: 955–971

    Article  Google Scholar 

  8. Shockley W, Queisser HJ. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys, 1961, 32: 510–519

    Article  Google Scholar 

  9. Zheng F, Xu J, Fang L, et al. Separation of the Schottky barrier and polarization effects on the photocurrent of Pt sandwiched Pb(Zr0.20Ti0.80)O3 films. Appl Phys Lett, 2008, 93: 172101

    Article  Google Scholar 

  10. Qin M, Yao K, Liang YC. Photovoltaic mechanisms in ferroelectric thin films with the effects of the electrodes and interfaces. Appl Phys Lett, 2009, 95: 022912

    Article  Google Scholar 

  11. Qin M, Yao K, Liang YC. High efficient photovoltaics in nanoscaled ferroelectric thin films. Appl Phys Lett, 2008, 93: 122904

    Article  Google Scholar 

  12. Grekov AA, Spitsyna MA, Spitzina VD, Fridkin VM. Photoferroelectric effects in ferroelectric semiconductors of AV-type BVI-type CVII-type with low-temperature phase changes. Sov Phys Crystallogr, 1970, 15: 423–429

    Google Scholar 

  13. Volk T, Grekov A, Kosonogov N, et al. Influence of illumination on the domain structure and curie temperature of BaTiO3. Sov Phys-Solid State, 1973, 14: 2740–2743

    Google Scholar 

  14. Yang SY, Seidel J, Byrnes SJ, et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat Nanotech, 2010, 5: 143–147

    Article  Google Scholar 

  15. Yang SY, Martin LW, Byrnes SJ, et al. Photovoltaic effects in BiFeO3. Appl Phys Lett, 2009, 95: 062909

    Article  Google Scholar 

  16. Qin M, Yao K, Liang YC. Photovoltaic characteristics in polycrystalline and epitaxial (Pb0.97La0.03)(Zr0.52Ti0.48)O3 ferroelectric thin films sandwiched between different top and bottom electrodes. J Appl Phys, 2009, 105: 061624

    Article  Google Scholar 

  17. Li D, Wang L, Li D, et al. Formation of nanostructured emitter for silicon solar cells using catalytic silver nanoparticles. Appl Surface Sci, 2013, 264: 621–624

    Article  Google Scholar 

  18. Dimitrov DZ, Du CH. Crystalline silicon solar cells with micro/nano texture. Appl Surface Sci, 2013, 266: 1–4

    Article  Google Scholar 

  19. Seidel J, Fu D, Yang SY, et al. Efficient photovoltaic current generation at ferroelectric domain walls. Phys Rev Lett, 2011, 107: 126805

    Article  Google Scholar 

  20. Won CJ, Park YA, Lee KD, et al. Diode and photocurrent effect in ferroelectric BaTiO3−δ . J Appl Phys, 2011, 109: 084108

    Article  Google Scholar 

  21. Jiang W, Cai W, Lin Z, et al. Effects of Nd-doping on optical and photovoltaic properties of barium titanate thin films prepared by sol–gel method. Mater Res Bull, 2013, 48: 3092–3097

    Article  Google Scholar 

  22. Cao D, Wang C, Zheng F, et al. High-efficiency ferroelectric-film solar cells with an n-type Cu2O cathode buffer layer. Nano Lett, 2012, 12: 2803–2809

    Article  Google Scholar 

  23. Cao D, Wang C, Zheng F, et al. Understanding the nature of remnant polarization enhancement, coercive voltage offset and timedependent photocurrent in ferroelectric films irradiated by ultraviolet light. J Mater Chem, 2012, 22: 12592

    Article  Google Scholar 

  24. Yang X, Su X, Shen M, et al. Enhancement of photocurrent in ferroelectric films via the incorporation of narrow bandgap nanoparticles. Adv Mater, 2012, 24: 1202–1208

    Article  Google Scholar 

  25. Cao D, Zhang H, Fang L, et al. Polarization effect on the photocurrent of Pt sandwiched multi-crystalline ferroelectric films. Mater Chem Phys, 2011, 129: 783–786

    Article  Google Scholar 

  26. Park J, Won Ahn C, Won Kim I. Photocurrent of lead-free (K0.5Na0.5)(Mn0.005Nb0.995)O3 ferroelectric nanotubes. J Appl Phys, 2012, 112: 014312

    Article  Google Scholar 

  27. Park J, Won SS, Ahn CW, et al. Ferroelectric photocurrent effect in polycrystalline lead-free (K0.5Na0.5)(Mn0.005Nb0.995)O3 thin film. J Am Ceram Soc, 2013, 96: 146–150

    Article  Google Scholar 

  28. Guo R, You L, Chen L, et al. Photovoltaic property of BiFeO3 thin films with 109° domains. Appl Phys Lett, 2011, 99: 122902

    Article  Google Scholar 

  29. Yan F, Chen G, Lu L, et al. Dynamics of photogenerated surface charge on BiFeO3 films. ACS Nano, 2012, 6: 2353–2360

    Article  Google Scholar 

  30. Nechache R, Harnagea C, Licoccia S, et al. Photovoltaic properties of Bi2FeCrO6 epitaxial thin films. Appl Phys Lett, 2011, 98: 202902

    Article  Google Scholar 

  31. Nechache R, Huang W, Li S, et al. Photovoltaic properties of Bi2FeCrO6 films epitaxially grown on (100)-oriented silicon substrates. Nanoscale, 2016, 8: 3237–3243

    Article  Google Scholar 

  32. Ji W, Yao K, Liang YC. Evidence of bulk photovoltaic effect and large tensor coefficient in ferroelectric BiFeO3 thin films. Phys Rev B, 2011, 84: 094115

    Article  Google Scholar 

  33. Meng W, Saparov B, Hong F, et al. Alloying and defect control within chalcogenide perovskites for optimized photovoltaic application. Chem Mater, 2016, 28: 821–829

    Article  Google Scholar 

  34. Zhang W, Yang MM, Liang X, et al. Piezostrain-enhanced photovoltaic effects in BiFeO3/La0.7Sr0.3MnO3/PMN–PT heterostructures. Nano Energy, 2015, 18: 315–324

    Article  Google Scholar 

  35. Bousquet E, Dawber M, Stucki N, et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature, 2008, 452: 732–736

    Article  Google Scholar 

  36. Senn MS, Bombardi A, Murray CA, et al. Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping. Phys Rev Lett, 2015, 114: 035701

    Article  Google Scholar 

  37. Choi T, Lee S, Choi YJ, et al. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science, 2009, 324: 63–66

    Article  Google Scholar 

  38. Young SM, Zheng F, Rappe AM. First-principles calculation of the bulk photovoltaic effect in bismuth ferrite. Phys Rev Lett, 2012, 109: 236601

    Article  Google Scholar 

  39. Chen B, Zuo Z, Liu Y, et al. Tunable photovoltaic effects in transparent Pb(Zr0.53, Ti0.47)O3 capacitors. Appl Phys Lett, 2012, 100: 173903

    Article  Google Scholar 

  40. Daranciang D, Highland MJ, Wen H, et al. Ultrafast photovoltaic response in ferroelectric nanolayers. Phys Rev Lett, 2012, 108: 087601

    Article  Google Scholar 

  41. Gou GY, Bennett JW, Takenaka H, et al. Post density functional theoretical studies of highly polar semiconductive Pb(Ti1−x Nix)O3−x solid solutions: effects of cation arrangement on band gap. Phys Rev B, 2011, 83: 205115

    Article  Google Scholar 

  42. Berger RF, Neaton JB. Computational design of low-band-gap double perovskites. Phys Rev B, 2012, 86: 165211

    Article  Google Scholar 

  43. Zheng T, Deng H, Zhou W, et al. Bandgap modulation and magnetic switching in PbTiO3 ferroelectrics by transition elements doping. Ceramics Int, 2016, 42: 6033–6038

    Article  Google Scholar 

  44. Choi WS, Chisholm MF, Singh DJ, et al. Wide bandgap tunability in complex transitionmetal oxides by site-specific substitution. Nat Commun, 2012, 3: 689

    Article  Google Scholar 

  45. Wang F, Grinberg I, Rappe AM. Semiconducting ferroelectric photovoltaics through Zn2+ doping into KNbO3 and polarization rotation. Phys Rev B, 2014, 89: 235105

    Article  Google Scholar 

  46. Grinberg I, West DV, Torres M, et al. Perovskite oxides for visiblelight-absorbing ferroelectric and photovoltaic materials. Nature, 2013, 503: 509–512

    Article  Google Scholar 

  47. Nechache R, Harnagea C, Li S, et al. Bandgap tuning ofmultiferroic oxide solar cells. Nat Photon, 2014, 9: 61–67

    Article  Google Scholar 

  48. Zhang YG, Zheng HW, Zhang JX, et al. Photovoltaic effects in Bi4Ti3O12 thin film prepared by a sol–gelmethod. Mater Lett, 2014, 125: 25–27

    Article  Google Scholar 

  49. Tu CS, Chen CS, Chen PY, et al. Enhanced photovoltaic effects in A-site samarium doped BiFeO3 ceramics: the roles of domain structure and electronic state. J Eur Ceramic Soc, 2016, 36: 1149–1157

    Article  Google Scholar 

  50. Puli VS, Pradhan DK, Katiyar RK, et al. Photovoltaic effect in transition metal modified polycrystalline BiFeO3 thin films. J Phys D-Appl Phys, 2014, 47: 075502

    Article  Google Scholar 

  51. Wang H, Gou G, Li J. Ruddlesden–Popper perovskite sulfides A3B2S7: a new family of ferroelectric photovoltaic materials for the visible spectrum. Nano Energy, 2016, 22: 507–513

    Article  Google Scholar 

  52. Saeki M, Yajima Y, Onoda M. Preparation and crystal structures of new barium zirconium sulfides, Ba2ZrS4 and Ba3Zr2S7. J Solid State Chem, 1991, 92: 286–294

    Article  Google Scholar 

  53. Shvydka D, Karpov VG. Nanodipole photovoltaics. Appl Phys Lett, 2008, 92: 053507

    Article  Google Scholar 

  54. Jha R, Liu X, Wieland K, et al. Capacitance-voltage characterization of solar cells with CdS in CdTe matrix. MRS Proc, 2010, 1260: 1260-T13-04

    Article  Google Scholar 

  55. Huang F, Liu X. A ferroelectric–semiconductor-coupled solar cell with tunable photovoltage. Appl Phys Lett, 2013, 102: 103501

    Article  Google Scholar 

  56. Huang F, Liu X, Wang W. A CdS nanodipole solar cell. Prog Photovolt-Res Appl, 2015, 23: 319–330

    Article  Google Scholar 

  57. Schmidt ME, Blanton SA, Hines MA, et al. Polar CdSe nanocrystals: Implications for electronic structure. J Chem Phys, 1997, 106: 5254–5259

    Article  Google Scholar 

  58. Blanton SA, Leheny RL, Hines MA, et al. Dielectric dispersion measurements of CdSe nanocrystal colloids: observation of a permanent dipole moment. Phys Rev Lett, 1997, 79: 865–868

    Article  Google Scholar 

  59. Shim M, Guyot-Sionnest P. Permanent dipolemoment and charges in colloidal semiconductor quantum dots. J Chem Phys, 1999, 111: 6955–6964

    Article  Google Scholar 

  60. Hao LZ, Gao W, Liu YJ, et al. High-performance n-MoS2/i-SiO2 /p-Si heterojunction solar cells. Nanoscale, 2015, 7: 8304–8308

    Article  Google Scholar 

  61. Fan Z, Xiao J, Yao K, et al. Ferroelectric polarization relaxation in Au/Cu2O/ZnO/BiFeO3/Pt heterostructure. Appl Phys Lett, 2015, 106: 102902

    Article  Google Scholar 

  62. Dong W, Guo Y, Guo B, et al. Photovoltaic properties of BiFeO3 thin film capacitors by using Al-doped zinc oxide as top electrode. Mater Lett, 2013, 91: 359–361

    Article  Google Scholar 

  63. Zheng F, Xin Y, Huang W, et al. Above 1% efficiency of a ferroelectric solar cell based on the Pb(Zr, Ti)O3 film. JMater Chem A, 2014, 2: 1363–1368

    Article  Google Scholar 

  64. Zheng F, Zhang P, Wang X, et al. Photovoltaic enhancement due to surface-plasmon assisted visible-light absorption at the inartificial surface of lead zirconate–titanate film. Nanoscale, 2014, 6: 2915–2921

    Article  Google Scholar 

  65. Nalwa KS, Carr JA, Mahadevapuram RC, et al. Enhanced charge separation in organic photovoltaic films doped with ferroelectric dipoles. Energy Environ Sci, 2012, 5: 7042

    Article  Google Scholar 

  66. Garbugli M, Porro M, Roiati V, et al. Light energy harvesting with nano-dipoles. Nanoscale, 2012, 4: 1728–1733

    Article  Google Scholar 

  67. Fan Z, Yao K, Wang J. Photovoltaic effect in an indium-tin-oxide/ ZnO/BiFeO3/Pt heterostructure. Appl Phys Lett, 2014, 105: 162903

    Article  Google Scholar 

  68. Pan DF, Bi GF, Chen GY, et al. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZTZnO heterostructures. Sci Rep, 2016, 6: 22948

    Article  Google Scholar 

  69. Chatterjee S, Bera A, Pal AJ. p–i–n Heterojunctions with BiFeO3 perovskite nanoparticles and p- and n-type oxides: photovoltaic properties. ACS Appl Mater Interfaces, 2014, 6: 20479–20486

    Article  Google Scholar 

  70. Zhang JX, Zheng HW, Zhang YG, et al. Photovoltaic effect of a bilayer film with Bi4Ti3O12/BiFeO3 heterostructure. Mater Lett, 2015, 156: 98–100

    Article  Google Scholar 

  71. Nie C, Zhao S, Bai Y, et al. The ferroelectric photovoltaic effect of BiCrO3/BiFeO3 bilayer composite films. Ceramics Int, 2016, 42: 14036–14040

    Article  Google Scholar 

  72. Sharma S, Tomar M, Kumar A, et al. Photovoltaic effect in BiFeO3/BaTiO3 multilayer structure fabricated by chemical solution deposition technique. J Phys Chem Solids, 2016, 93: 63–67

    Article  Google Scholar 

  73. Chakrabartty J, Nechache R, Harnagea C, et al. Enhanced photovoltaic properties in bilayer BiFeO3/Bi-Mn-O thin films. Nanotechnology, 2016, 27: 215402

    Article  Google Scholar 

  74. Wu F, Guo Y, Guo B, et al. Photovoltaic effect of a bilayer thin film with (Na0.5Bi0.5)1−x BaxTiO3/BiFeO3 heterostructure. J Phys D-Appl Phys, 2013, 46: 365304

    Article  Google Scholar 

  75. Dong W, Guo Y, Guo B, et al. Enhanced photovoltaic effect in BiVO4 semiconductor by incorporation with an ultrathin BiFeO3 ferroelectric layer. ACS Appl Mater Interfaces, 2013, 5: 6925–6929

    Article  Google Scholar 

  76. Chakrabartty J, Nechache R, Li S, et al. Photovoltaic properties of multiferroic BiFeO3/BiCrO3 heterostructures. J Am Ceram Soc, 2014, 97: 1837–1840

    Article  Google Scholar 

  77. Chakrabartty JP, Nechache R, Harnagea C, et al. Photovoltaic effect in multiphase Bi-Mn-O thin films. Opt Express, 2014, 22: A80–89

    Article  Google Scholar 

  78. Zhou Y, Fang L, You L, et al. Photovoltaic property of domain engineered epitaxial BiFeO3 films. Appl Phys Lett, 2014, 105: 252903

    Article  Google Scholar 

  79. Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131: 6050–6051

    Article  Google Scholar 

  80. Stranks SD, Eperon GE, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342: 341–344

    Article  Google Scholar 

  81. Liu H, Chen J, Ren Y, et al. Large photovoltage and controllable photovoltaic effect in PbTiO3-Bi(Ni2/3+x Nb1/3−x )O3−δ Ferroelectrics. Adv Electron Mater, 2015 1: 1400051

    Article  Google Scholar 

  82. Inoue R, Ishikawa S, Imura R, et al. Giant photovoltaic effect of ferroelectric domain walls in perovskite single crystals. Sci Rep, 2015, 5: 14741

    Article  Google Scholar 

  83. Hu Y, Wang C, Tang Y, et al. Three-dimensional self-branching anatase TiO2 nanorods with the improved carrier collection for Sr-TiO3-based perovskite solar cells. J Alloys Compounds, 2016, 679: 32–38

    Article  Google Scholar 

  84. Frost JM, Butler KT, Brivio F, et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett, 2014, 14: 2584–2590

    Article  Google Scholar 

  85. Fan Z, Xiao J, Sun K, et al. Ferroelectricity of CH3NH3PbI3 perovskite. J Phys Chem Lett, 2015, 6: 1155–1161

    Article  Google Scholar 

  86. Filippetti A, Delugas P, Saba MI, et al. Entropy-suppressed ferroelectricity in hybrid lead-iodide perovskites. J Phys Chem Lett, 2015, 6: 4909–4915

    Article  Google Scholar 

  87. Stoumpos CC, Malliakas CD, Kanatzidis MG. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem, 2013, 52: 9019–9038

    Article  Google Scholar 

  88. Kutes Y, Ye L, Zhou Y, et al. Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films. J Phys Chem Lett, 2014, 5: 3335–3339

    Article  Google Scholar 

  89. Wei J, Zhao Y, Li H, et al. Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells. J Phys Chem Lett, 2014, 5: 3937–3945

    Article  Google Scholar 

  90. Wang F, Meng D, Li X, et al. Influence of annealing temperature on the crystallization and ferroelectricity of perovskite CH3NH3PbI3 film. Appl Surface Sci, 2015, 357: 391–396

    Article  Google Scholar 

  91. Zhao P, Xu J, Ma C, et al. Spontaneous polarization behaviors in hybrid halide perovskite film. Scripta Mater, 2015, 102: 51–54

    Article  Google Scholar 

  92. Xiao Z, Yuan Y, Shao Y, et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat Mater, 2014, 14: 193–198

    Article  Google Scholar 

  93. Beilsten-Edmands J, Eperon GE, Johnson RD, et al. Non-ferroelectric nature of the conductance hysteresis in CH3NH3PbI3 perovskite-based photovoltaic devices. Appl Phys Lett, 2015, 106: 173502

    Article  Google Scholar 

  94. Kim GY, Oh SH, Nguyen BP, et al. Efficient carrier separation and intriguing switching of bound charges in inorganic–organic lead halide solar cells. J Phys Chem Lett, 2015, 6: 2355–2362

    Article  Google Scholar 

  95. Leguy AMA, Frost JM, McMahon AP, et al. The dynamics of methylammonium ions in hybrid organic–inorganic perovskite solar cells. Nat Commun, 2015, 6: 7124

    Article  Google Scholar 

  96. Sherkar TS, Jan Anton Koster L. Can ferroelectric polarization explain the high performance of hybrid halide perovskite solar cells? Phys Chem Chem Phys, 2016, 18: 331–338

    Article  Google Scholar 

  97. Liu S, Zheng F, Koocher NZ, et al. Ferroelectric domain wall induced band gap reduction and charge separation in organometal halide perovskites. J Phys Chem Lett, 2015, 6: 693–699

    Article  Google Scholar 

  98. Yamada Y, Nakamura T, Yasui S, et al. Measurement of transient photoabsorption and photocurrent of BiFeO3 thin films: evidence for long-lived trapped photocarriers. Phys Rev B, 2014, 89: 035133

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shufeng Wang  (王树峰) or Lixin Xiao  (肖立新).

Additional information

Yang Liu is a PhD candidate at the Department of Physics, Peking University, China. He joined Prof. Shufeng Wang’s Ultrafast Spectroscopy group in 2014. Now his main project is on the photophysics of perovskite photovoltaic materials.

Shufeng Wang got his PhD degree in 2001, from the Department of Physics, Peking University, China, under the guidance of Prof. Qihuang Gong. He worked as a postdoctoral researcher in the group of Prof. Dana D. Dlott at the University of Illinois at Urbana-Champaign (USA) between 2001 and 2004. Now he is an associate professor at the Department of Physics, Peking University. His research interests are on nonlinear optics and ultrafast dynamics of photovoltaic materials and devices.

Lixin Xiao is a professor of the Department of Physics, Peking University (China) since 2011. He received his PhD in applied chemistry fromthe University of Tokyo (Japan) in 2000. He has been working on organic optoelectronicsmaterials and devices, especially on photovoltaic (PV) and organic light-emitting devices (OLED).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, S., Chen, Z. et al. Applications of ferroelectrics in photovoltaic devices. Sci. China Mater. 59, 851–866 (2016). https://doi.org/10.1007/s40843-016-5102-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-016-5102-0

Keywords

Navigation