Skip to main content
Log in

Improving the efficiency of dye-sensitized solar cells by photoanode surface modifications

光阳极表面修饰以提高染料敏化太阳电池效率

  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Dye-sensitized solar cells (DSSCs) provide a promising alternative solar cell technology because of their high efficiency, environmental friendliness, easy fabrication, and low cost. Power conversion efficiency is an important parameter to measure the performance of DSSCs, but the severe charge recombination that occurs at the photoanode hinders the future improvement of power conversion efficiency. Therefore, one of the key goals for achieving high efficiency is to reduce the energy loss caused by the unwanted charge recombination at various interfaces. From this perspective, surface modification of the photoanode is the simplest method among the various approaches available in the literature for enhancing the performance of DSSCs by inhibiting the interfacial charge recombination. After some brief notes on DSSCs, in this review, we present a comprehensive discussion on surface modifications of different photoanodes that have been adopted in the literature not only for reducing recombination but also for enhancing light harvesting. Depending on the electrode materials, we discuss surface modifications of binary oxides such as TiO2 and ZnO and ternary oxides, including Zn2SnO4, SrSnO3, and BaSnO3. We also talk about methods of surface modification and the materials suitable for surface treatment. Finally, we end with a brief future outlook of DSSCs.

摘要

染料敏化太阳电池因其高效率、环境友好、制作工艺简单、生产成本低等优点而极具应用前景. 光电转换效率是衡量染料敏化太阳电池性能的重要参数之一, 然而光阳极上发生的电子复合阻碍了光电转换效率的进一步提高. 因此, 减少由各个界面处不利的电子复合引起的能量损失是提高光电转换效率的关键之一. 从这个方面来说, 光阳极表面修饰是抑制界面电子复合以提高染料敏化太阳电池光电转换效率的最简便方法之一. 这篇综述简单地介绍了染料敏化太阳电池的工作原理, 综合讨论了目前文献中所采用的不同光阳极的表面修饰方法. 这些表面修饰方法不仅能减少电子复合, 还能提高对太阳光的吸收. 根据光阳极材料的特点, 本文讨论了二元氧化物, 例如TiO2和ZnO, 以及包括Zn2SnO4、SrSnO3和BaSnO3在内的三元氧化物的表面修饰. 此外, 本文讨论了表面修饰的具体方法以及适用于表面处理的材料. 最后, 展望了染料敏化太阳电池的发展前景.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li SL, Xu Q. Metal-organic frameworks as platforms for clean energy. Energy Environ Sci, 2013, 6: 1656–1683

    Article  Google Scholar 

  2. Robertson N. CuI versus RuII: dye-sensitized solar cells and beyond. ChemSusChem, 2008, 1: 977–979

    Article  Google Scholar 

  3. Chapin DM, Fuller CS, Pearson GL. A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys, 1954, 25: 676–677

    Article  Google Scholar 

  4. O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353: 737–740

    Article  Google Scholar 

  5. Ragoussi ME, Torres T. New generation solar cells: concepts, trends and perspectives. Chem Commun, 2015, 51: 3957–3972

    Article  Google Scholar 

  6. Beard MC, Luther JM, Nozik AJ. The promise and challenge of nanostructured solar cells. Nat Nanotech, 2014, 9: 951–954

    Article  Google Scholar 

  7. Saxena V, Aswal DK. Surface modifications of photoanodes in dye sensitized solar cells: enhanced light harvesting and reduced recombination. Semicond Sci Technol, 2015, 30: 064005

    Article  Google Scholar 

  8. Hagfeldt A, Boschloo G, Sun L, et al. Dye-sensitized solar cells. Chem Rev, 2010, 110: 6595–6663

    Article  Google Scholar 

  9. Kakiage K, Aoyama Y, Yano T, et al. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy- anchor dyes. Chem Commun, 2015, 51: 15894–15897

    Article  Google Scholar 

  10. Snaith HJ. Estimating the maximum attainable efficiency in dyesensitized solar cells. Adv Funct Mater, 2010, 20: 13–19

    Article  Google Scholar 

  11. Grätzel M. Dye-sensitized solar cells. J Photochem Photobio C-Photochem Rev, 2003, 4: 145–153

    Article  Google Scholar 

  12. Cherian S, Wamser CC. Adsorption and photoactivity of tetra(4- carboxyphenyl)porphyrin (TCPP) on nanoparticulate TiO2. J Phys Chem B, 2000, 104: 3624–3629

    Article  Google Scholar 

  13. O’Regan BC, López-Duarte I, Martínez-Díaz MV, et al. Catalysis of recombination and its limitation on open circuit voltage for dye sensitized photovoltaic cells using phthalocyanine dyes. J Am Chem Soc, 2008, 130: 2906–2907

    Article  Google Scholar 

  14. Hara K, Dan-oh Y, Kasada C, et al. Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells. Langmuir, 2004, 20: 4205–4210

    Article  Google Scholar 

  15. Nazeeruddin MK, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium( II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J AmChem Soc, 1993, 115: 6382–6390

    Article  Google Scholar 

  16. Jose R, Thavasi V, Ramakrishna S. Metal oxides for dye-sensitized solar cells. J Am Ceramic Soc, 2009, 92: 289–301

    Article  Google Scholar 

  17. Hara K, Horiguchi T, Kinoshita T, et al. Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells. Solar Energy Mater Solar Cells, 2001, 70: 151–161

    Article  Google Scholar 

  18. Wang ZS, Sayama K, Sugihara H. Efficient eosin Y dye-sensitized solar cell containing Br?/Br3 ? electrolyte. J Phys Chem B, 2005, 109: 22449–22455

    Article  Google Scholar 

  19. Nelson JJ, Amick TJ, Elliott CM. Mass transport of polypyridyl cobalt complexes in dye-sensitized solar cells with mesoporous TiO2 photoanodes. J Phys Chem C, 2008, 112: 18255–18263

    Article  Google Scholar 

  20. Yin YT, Chen LY. Promising surface modification strategies for high power conversion efficiency dye sensitized solar cell based on ZnO composite photoanode. Energy Procedia, 2014, 61: 2042–2045

    Article  Google Scholar 

  21. Wei M, Konishi Y, Zhou H, et al. Highly efficient dye-sensitized solar cells composed ofmesoporous titanium dioxide. JMater Chem, 2006, 16: 1287–1293

    Article  Google Scholar 

  22. Chou TP, Zhang Q, Fryxell GE, et al. Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency. Adv Mater, 2007, 19: 2588–2592

    Article  Google Scholar 

  23. Wei M, Qi Z, Ichihara M, et al. Synthesis of single-crystal niobium pentoxide nanobelts. Acta Mater, 2008, 56: 2488–2494

    Article  Google Scholar 

  24. Fukai Y, Kondo Y, Mori S, et al. Highly efficient dye-sensitized SnO2 solar cells having sufficient electron diffusion length. Electrochemistry Commun, 2007, 9: 1439–1443

    Article  Google Scholar 

  25. Zheng H, Tachibana Y, Kalantar-zadeh K.Dye-sensitized solar cells based onWO3. Langmuir, 2010, 26: 19148–19152

  26. Tan B, Toman E, Li Y, et al. Zinc stannate (Zn2SnO4) dye-sensitized solar cells. J Am Chem Soc, 2007, 129: 4162–4163

    Article  Google Scholar 

  27. Guo F, Li G, Zhang W. Barium staminate as semiconductor working electrodes for dye-sensitized solar cells. Int J Photoenergy, 2010, 2010: 1–7

    Article  Google Scholar 

  28. Burnside S, Moser JE, Brooks K, et al. Nanocrystallinemesoporous strontium titanate as photoelectrode material for photosensitized solar devices: increasing photovoltage through flatband potential engineering. J Phys Chem B, 1999, 103: 9328–9332

    Article  Google Scholar 

  29. O’Regan BC, Durrant JR. Kinetic and energetic paradigms for dyesensitized solar cells: moving from the ideal to the real. Acc Chem Res, 2009, 42: 1799–1808

    Article  Google Scholar 

  30. Li Y, Pang A, Wang C, et al. Metal-organic frameworks: promising materials for improving the open circuit voltage of dye-sensitized solar cells. J Mater Chem, 2011, 21: 17259–17264

    Article  Google Scholar 

  31. Palomares E, Clifford JN, Haque SA, et al. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. J Am Chem Soc, 2003, 125: 475–482

    Article  Google Scholar 

  32. Li TC, Goes MS, Fabregat-Santiago F, et al. Surface passivation of nanoporous TiO2 via atomic layer deposition of ZrO2 for solid-state dye-sensitized solar cell applications. J Phys Chem C, 2009, 113: 18385–18390

    Article  Google Scholar 

  33. Hamann TW, Farha OK, Hupp JT. Outer-sphere redox couples as shuttles in dye-sensitized solar cells. Performance enhancement based on photoelectrode modification via atomic layer deposition. J Phys Chem C, 2008, 112: 19756–19764

    Google Scholar 

  34. Chen SG, Chappel S, Diamant Y, et al. Preparation ofNb2O5 coated TiO2 nanoporous electrodes and their application in dye-sensitized solar cells. Chem Mater, 2001, 13: 4629–4634

    Article  Google Scholar 

  35. Wu S, Han H, Tai Q, et al. Improvement in dye-sensitized solar cells with a ZnO-coated TiO2 electrode by RF magnetron sputtering. Appl Phys Lett, 2008, 92: 122106

    Article  Google Scholar 

  36. Wu S, Gao X, Qin M, et al. SrTiO3 modified TiO2 electrodes and improved dye-sensitized TiO2 solar cells. Appl Phys Lett, 2011, 99: 042106

    Article  Google Scholar 

  37. Diamant Y, Chen SG, Melamed O, et al. Core-shell nanoporous electrode for dye sensitized solar cells: the effect of the SrTiO3 shell on the electronic properties of the TiO2 core. J Phys Chem B, 2003, 107: 1977–1981

    Article  Google Scholar 

  38. Zaban A, Chen SG, Chappel S, et al. Bilayer nanoporous electrodes for dye sensitized solar cells. Chem Commun, 2000, 2231–2232

    Google Scholar 

  39. Brennan TP, Tanskanen JT, Roelofs KE, et al. TiO2 conduction band modulation with In2O3 recombination barrier layers in solid-state dye-sensitized solar cells. J Phys Chem C, 2013, 117: 24138–24149

    Article  Google Scholar 

  40. Zhang L, Shi Y, Peng S, et al. Dye-sensitized solar cells made from BaTiO3-coated TiO2 nanoporous electrodes. J Photochem Photobio A-Chem, 2008, 197: 260–265

    Article  Google Scholar 

  41. L Wang, X Wu, et al. Modification of TiO2 electrode with a series of alkaline-earth carbonates: performance improvement of quasi-solid-state dye-sensitized solar cells. Proceeding of ISES World Congress Beijing China: 2007: 1295–1298

    Google Scholar 

  42. Wang ZS, Yanagida M, Sayama K, et al. Electronic-insulating coating of CaCO3 on TiO2 electrode in dye-sensitized solar cells: improvement of electron lifetime and efficiency. Chem Mater, 2006, 18: 2912–2916

    Article  Google Scholar 

  43. Gregg BA, Pichot F, Ferrere S, et al. Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces. J Phys Chem B, 2001, 105: 1422–1429

    Article  Google Scholar 

  44. Li Y, Chen C, Sun X, et al. Metal-organic frameworks at interfaces in dye-sensitized solar cells. ChemSusChem, 2014, 7: 2469–2472

    Article  Google Scholar 

  45. Sommeling PM, O’Regan BC, Haswell RR, et al. Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. J Phys Chem B, 2006, 110: 19191–19197

    Article  Google Scholar 

  46. O’Regan BC, Durrant JR, Sommeling PM, et al. Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. 2. Charge density, band edge shifts, and quantification of recombination losses at short circuit. J Phys Chem C, 2007, 111: 14001–14010

    Article  Google Scholar 

  47. Roy P, Kim D, Paramasivam I, et al. Improved efficiency of TiO2 nanotubes in dye sensitized solar cells by decoration with TiO2 nanoparticles. Electrochem Commun, 2009, 11: 1001–1004

    Article  Google Scholar 

  48. Wang ZS, Li FY, Huang CH. Photocurrent enhancement of hemicyanine dyes containing RSO3 group through treating TiO2 films with hydrochloric acid. J Phys Chem B, 2001, 105: 9210–9217

    Article  Google Scholar 

  49. Hao S, Wu J, Fan L, et al. The influence of acid treatment of TiO2 porous film electrode on photoelectric performance of dye-sensitized solar cell. Solar Energy, 2004, 76: 745–750

    Article  Google Scholar 

  50. Wang ZS, Yamaguchi T, Sugihara H, et al. Significant efficiency improvement of the black dye-sensitized solar cell through protonation of TiO2 films. Langmuir, 2005, 21: 4272–4276

    Article  Google Scholar 

  51. Jung HS, Lee JK, Lee S, et al. Acid adsorption on TiO2 nanoparticles— an electrochemical properties study. J Phys Chem C, 2008, 112: 8476–8480

    Article  Google Scholar 

  52. Park KH, Jin EM, Gu HB, et al. Effects of HNO3 treatment of TiO2 nanoparticles on the photovoltaic properties of dye-sensitized solar cells. Mater Lett, 2009, 63: 2208–2211

    Article  Google Scholar 

  53. Saxena V, Veerender P, Chauhan AK, et al. Efficiency enhancement in dye sensitized solar cells through co-sensitization of TiO2 nanocrystalline electrodes. Appl Phys Lett, 2012, 100: 133303

    Article  Google Scholar 

  54. Sakaguchi S, Ueki H, Kato T, et al. Quasi-solid dye sensitized solar cells solidified with chemically cross-linked gelators. J Photochem Photobio A-Chem, 2004, 164: 117–122

    Article  Google Scholar 

  55. Saxena V, Veerender P, Gusain A, et al. Co-sensitization of N719 and RhCL dyes on carboxylic acid treated TiO2 for enhancement of light harvesting and reduced recombination. Org Electrons, 2013, 14: 3098–3108

    Article  Google Scholar 

  56. Wang ZS, Zhou G. Effect of surface protonation of TiO2 on charge recombination and conduction band edgemovement in dye-sensitized solar cells. J Phys Chem C, 2009, 113: 15417–15421

    Article  Google Scholar 

  57. Balraju P, Kumar M, Roy MS, et al. Dye sensitized solar cells (DSSCs) based on modified iron phthalocyanine nanostructured TiO2 electrode and PEDOT:PSS counter electrode. Synthetic Met, 2009, 159: 1325–1331

    Article  Google Scholar 

  58. Murayama M, Mori T. Evaluation of treatment effects for high-performance dye-sensitized solar cells using equivalent circuit analysis. Thin Solid Films, 2006, 509: 123–126

    Article  Google Scholar 

  59. Singh J, Gusain A, Saxena V, et al. XPS, UV-Vis, FTIR, and EXAFS studies to investigate the binding mechanism of N719 dye onto oxalic acid treated TiO2 and its implication on photovoltaic properties. J Phys Chem C, 2013, 117: 21096–21104

    Article  Google Scholar 

  60. Li Y, Wang Y, Chen C, et al. Incorporating Zn2SnO4 quantum dots and aggregates for enhanced performance in dye-sensitized ZnO solar cells. Chem Eur J, 2012, 18: 11716–11722

    Article  Google Scholar 

  61. Shin YJ, Lee JH, Park JH, et al. Enhanced photovoltaic properties of SiO2-treated ZnOnanocrystalline electrode for dye-sensitized solar cell. Chem Lett, 2007, 36: 1506–1507

    Article  Google Scholar 

  62. Plank NOV, Howard I, Rao A, et al. Efficient ZnO nanowire solidstate dye-sensitized solar cells using organic dyes and core-shell nanostructures. J Phys Chem C, 2009, 113: 18515–18522

    Article  Google Scholar 

  63. Spalenka JW, Gopalan P, Katz HE, et al. Electronmobility enhancement in ZnO thin films via surface modification by carboxylic acids. Appl Phys Lett, 2013, 102: 041602

    Article  Google Scholar 

  64. Chen ZH, Tang YB, Liu CP, et al. Vertically aligned ZnO nanorod arrays sentisized with gold nanoparticles for Schottky barrier photovoltaic cells. J Phys Chem C, 2009, 113: 13433–13437

    Article  Google Scholar 

  65. Ferrere S, Zaban A, Gregg BA. Dye sensitization of nanocrystalline tin oxide by perylene derivatives. J Phys Chem B, 1997, 101: 4490–4493

    Article  Google Scholar 

  66. Tennakone K, Kumara GRRA, Kottegoda IRM, et al. An efficient dye-sensitized photoelectrochemical solar cellmade fromoxides of tin and zinc. Chem Commun, 1999, 15–16

    Google Scholar 

  67. Kumara GRRA, Tennakone K, Perera VPS, et al. Suppression of recombinations in a dye-sensitized photoelectrochemical cellmade from a film of tin IV oxide crystallites coated with a thin layer of aluminium oxide. J Phys D-Appl Phys, 2001, 34: 868–873

    Article  Google Scholar 

  68. Kay A, Grätzel M. Dye-sensitized core-shell nanocrystals: improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chem Mater, 2002, 14: 2930–2935

    Article  Google Scholar 

  69. Sayama K, Sugihara H, Arakawa H. Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye. Chem Mater, 1998, 10: 3825–3832

    Article  Google Scholar 

  70. Alpuche-Aviles MA, Wu Y. Photoelectrochemical study of the band structure of Zn2SnO4 prepared by the hydrothermal method. J Am Chem Soc, 2009, 131: 3216–3224

    Article  Google Scholar 

  71. Li Y, Zheng X, Zhang H, et al. Improving the efficiency of dyesensitized Zn2SnO4 solar cells: the role of Al3+ ions. Electrochim Acta, 2011, 56: 9257–9261

    Article  Google Scholar 

  72. Li Y, Guo B, Zheng X, et al. Improving the efficiency of CdS quantum dot-sensitized Zn2SnO4 solar cells by surface treatment with Al3+ ions. Electrochim Acta, 2012, 60: 66–70

    Article  Google Scholar 

  73. Chen C, Li Y, Sun X, et al. Efficiency enhanced dye-sensitized Zn2SnO4 solar cells using a facile chemical-bath deposition method. New J Chem, 2014, 38: 4465–4470

    Article  Google Scholar 

  74. Shin SS, Kim JS, Suk JH, et al. Improved quantum efficiency of highly efficient perovskite BaSnO3-based dye-sensitized solar cells. ACS Nano, 2013, 7: 1027–1035

    Article  Google Scholar 

  75. Li Y, Zhang H, Guo B, et al. Enhanced efficiency dye-sensitized SrSnO3 solar cells prepared using chemical bath deposition. Electrochim Acta, 2012, 70: 313–317

    Article  Google Scholar 

  76. Ganapathy V, Karunagaran B, Rhee SW. Improved performance of dye-sensitized solar cells with TiO2/alumina core-shell formation using atomic layer deposition. J Power Sources, 2010, 195: 5138–5143

    Article  Google Scholar 

  77. Lee S, Noh JH, Han HS, et al. Nb-doped TiO2: a new compact layer material for TiO2 dye-sensitized solar cells. J Phys Chem C, 2009, 113: 6878–6882

    Article  Google Scholar 

  78. Kato K, Tsuzuki A, Taoda H, et al. Crystal structures of TiO2 thin coatings prepared from the alkoxide solution via the dip-coating technique affecting the photocatalytic decomposition of aqueous acetic acid. J Mater Sci, 1994, 29: 5911–5915

    Article  Google Scholar 

  79. Chou CS, Chou FC, Kang JY. Preparation of ZnO-coated TiO2 electrodes using dip coating and their applications in dye-sensitized solar cells. Powder Tech, 2012, 215-216: 38–45

    Article  Google Scholar 

  80. Nair P. Semiconductor thin films by chemical bath deposition for solar energy related applications. Solar Energy Mater Solar Cells, 1998, 52: 313–344

    Article  Google Scholar 

  81. Lee YL, Lo YS. Highly efficient quantum-dot-sensitized solar cell based on Co-sensitization of CdS/CdSe. Adv Funct Mater, 2009, 19: 604–609

    Article  Google Scholar 

  82. Lin SC, Lee YL, Chang CH, et al. Quantum-dot-sensitized solar cells: assembly of CdS-quantum-dots coupling techniques of selfassembled monolayer and chemical bath deposition. Appl Phys Lett, 2007, 90: 143517

    Article  Google Scholar 

  83. Mora-Sero I, Gime´nez S, Fabregat-Santiago F, et al. Recombination in quantum dot sensitized solar cells. Acc Chem Res, 2009, 42: 1848–1857

    Article  Google Scholar 

  84. Lu G, Hupp JT. Metal-organic frameworks as sensors: a ZIF-8 based Fabry-Pe´rot device as a selective sensor for chemical vapors and gases. J Am Chem Soc, 2010, 132: 7832–7833

    Article  Google Scholar 

  85. Bills B, Shanmugam M, Baroughi MF. Effects of atomic layer deposited HfO2 compact layer on the performance of dye-sensitized solar cells. Thin Solid Films, 2011, 519: 7803–7808

    Article  Google Scholar 

  86. Chandiran AK, Tetreault N, Humphry-Baker R, et al. Subnanometer Ga2O3 tunnelling layer by atomic layer deposition to achieve 1.1 V open-circuit potential in dye-sensitized solar cells. Nano Lett, 2012, 12: 3941–3947

    Article  Google Scholar 

  87. Kim MH, Kwon YU. Semiconductor CdO as a blocking layermaterial on DSSC electrode: mechanism and application. J Phys Chem C, 2009, 113: 17176–17182

    Article  Google Scholar 

  88. Liu L, Niu H, Zhang S, et al. Improved performance of dye-sensitized solar cells: an TiO2–nano-SiO2 hybrid photoanode with posttreatment of TiCl4 aqueous solution. Appl Surface Sci, 2012, 261: 8–13

    Article  Google Scholar 

  89. Brennan TP, Bakke JR, Ding IK, et al. The importance of dye chemistry and TiCl4 surface treatment in the behavior of Al2O3 recombination barrier layers deposited by atomic layer deposition in solidstate dye-sensitized solar cells. Phys Chem Chem Phys, 2012, 14: 12130–12140

    Article  Google Scholar 

  90. Ramasamy P, Kang MS, Cha HJ, et al. Highly efficient dye-sensitized solar cells based on HfO2 modified TiO2 electrodes. Mater Res Bull, 2013, 48: 79–83

    Article  Google Scholar 

  91. Ozawa H, Okuyama Y, Arakawa H. Effective enhancement of the performance of black dye based dye-sensitized solar cells by metal oxide surface modification of the TiO2 photoelectrode. Dalton Trans, 2012, 41: 5137–5139

    Article  Google Scholar 

  92. Nirmal Peiris TA, Upul Wijayantha KG, García-Cañadas J. Insights into mechanical compression and the enhancement in performance by Mg(OH)2 coating in flexible dye sensitized solar cells. Phys Chem Chem Phys, 2014, 16: 2912–2919

    Article  Google Scholar 

  93. Zhang J, Yang G, Sun Q, et al. The improved performance of dye sensitized solar cells by bifunctional aminosilane modified dye sensitized photoanode. J Renewable Sustainable Energy, 2010, 2: 013104

    Article  Google Scholar 

  94. Sewvandi GA, Tao Z, Kusunose T, et al. Modification of TiO2 electrode with organic silane interposed layer for high-performance of dye-sensitized solar cells. ACS Appl Mater Interf, 2014, 6: 5818–5826

    Article  Google Scholar 

  95. An H, Song D, Lee J, et al. Promotion of strongly anchored dyes on the surface of titania by tetraethyl orthosilicate treatment for enhanced solar cell performance. J Mater Chem A, 2014, 2: 2250–2255

    Article  Google Scholar 

  96. Hu Q, Wu C, Cao L, et al. A novel TiO2 nanowires/nanoparticles composite photoanode with SrO shell coating for high performance dye-sensitized solar cell. J Power Sources, 2013, 226: 8–15

    Article  Google Scholar 

  97. Prasittichai C, Hupp JT. Surface modification of SnO2 photoelectrodes in dye-sensitized solar cells: significant improvements in photovoltage via Al2O3 atomic layer deposition. J Phys Chem Lett, 2010, 1: 1611–1615

    Article  Google Scholar 

  98. Chen W, Qiu Y, Yang S. A new ZnO nanotetrapods/SnO2 nanoparticles composite photoanode for high efficiency flexible dye-sensitized solar cells. Phys Chem Chem Phys, 2010, 12: 9494–9501

    Article  Google Scholar 

  99. Alberti A, Pellegrino G, Condorelli GG, et al. Efficiency enhancement in ZnO: Al-based dye-sensitized solar cells structured with sputtered TiO2 blocking layers. J Phys Chem C, 2014, 118: 6576–6585

    Article  Google Scholar 

  100. Meng Y, Lin Y, Lin Y, et al. Preparation and surfacemodification of hierarchical nanosheets-based ZnO microstructures for dye-sensitized solar cells. J Solid State Chem, 2014, 210: 160–165

    Article  Google Scholar 

  101. Shin SS, Kim DW, Hwang D, et al. Controlled interfacial electron dynamics in highly efficient Zn2SnO4-based dye-sensitized solar cells. ChemSusChem, 2014, 7: 501–509

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yafeng Li  (李亚峰) or Mingdeng Wei  (魏明灯).

Additional information

Yafeng Li received his Bachelor degree in materials chemistry from the University of Science and Technology of China in 2004 and PhD degree in physical chemistry from Fujian Institute of Research on the Structure ofMatter, Chinese Academy of Sciences in 2009. He joined Fuzhou University as an associate professor in 2012. His current research interests involve dye-sensitized solar cells and inorganic-organic hybrid materials.

Mingdeng Wei received his PhD degree in catalysis chemistry from Nagasaki University in 2000, and then worked at Tohoku University, National Institute of Advanced Industrial Science and Technology (AIST) and Japan Science and Technology Agency (JST). He has been a professor at Fuzhou University since 2007 and has published over 130 peer-reviewed papers. His research interests include dye-sensitized solar cells, lithium-ion batteries, supercapacitor and nanoporous materials. He is an editorial board member of Scientific Reports.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Li, Y., Dou, J. et al. Improving the efficiency of dye-sensitized solar cells by photoanode surface modifications. Sci. China Mater. 59, 867–883 (2016). https://doi.org/10.1007/s40843-016-5100-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-016-5100-2

Keywords

Navigation