Skip to main content
Log in

Progress of interface engineering in perovskite solar cells

高效率钙钛矿太阳电池的界面修饰及其研究进展

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Organic-inorganic hybrid halide perovskite materials have been a suitable active layer in solar cells due to the extraordinary photonic and electronic properties. Perovskite solar cells (PSCs), no matter conventional structure or inverted structure, contain several key interfaces, including electrode/electron transport materials (ETM) interface, ETM/perovskite interface, perovskite/hole transport materials (HTM) interface, HTM/electrode interface. The interface is vital to the overall performance of the devices, since the exciton formation, dissociation, and recombination are directly related to the interface. Moreover, the degradation of devices is also highly sensitive to the interface. As a result, the deep understanding of the interfacial charge transfer and corresponding interfacial engineering is extremely important to achieve high-performance and high-stability PSCs. This review mainly focuses on the recent progress of interfacial engineering in PSCs, including conventional structured PSCs, PSCs employing carbon counter electrode, and inverted structured PSCs.

摘要

有机-无机杂化钙钛矿由于其优异的电学及光学性质, 成为制备太阳电池吸光层的理想材料. 无论反式还是正式结构的钙钛矿太阳电池, 均包含以下几个关键界面: 电极/电子传输层界面、电子传输层/钙钛矿界面、钙钛矿/空穴传输层界面、空穴传输层/电极界面. 这些界面的性质对于电池性能至关重要, 因为激子的形成、分离及复合都直接决定于这些界面. 此外, 器件的稳定性也受界面性质的影响. 因此, 界面电荷转移以及相应的界面修饰对于制备高效率、高稳定性电池器件具有重要助益. 本论文将侧重综述近期在钙钛矿电池领域关于界面修饰问题的重大突破与进展.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg

  2. Xu Z, Mitzi DB. [CH3(CH2)11NH3]SnI3: a hybrid semiconductor with MoO3-type tin(II) iodide layers. Inorg Chem, 2003, 42: 6589–6591

    Article  Google Scholar 

  3. Mitzi DB, Feild CA, Harrison WTA, et al. Conducting tin halides with a layered organic-based perovskite structure. Nature, 1994, 369: 467–469

    Article  Google Scholar 

  4. Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131: 6050–6051

    Article  Google Scholar 

  5. Yang WS, Noh JH, Jeon NJ, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348: 1234–1237

    Article  Google Scholar 

  6. Saliba M, Matsui T, Seo JY, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci, 2016, 9: 1989–1997

    Article  Google Scholar 

  7. Zhou H, Chen Q, Li G, et al. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345: 542–546

    Article  Google Scholar 

  8. Lee MM, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338: 643–647

    Article  Google Scholar 

  9. Brenner TM, Egger DA, Kronik L, et al. Hybrid organic-inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat Rev Mater, 2016, 1: 15007

    Article  Google Scholar 

  10. Xing G, Mathews N, Sun S, et al. Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342: 344–347

    Article  Google Scholar 

  11. Stranks SD, Eperon GE, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342: 341–344

    Article  Google Scholar 

  12. Sha Wei, Ren X, Chen L, et al. The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl Phys Lett, 2015, 106: 221104

    Article  Google Scholar 

  13. Niu G, Guo X, Wang L. Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem A, 2015, 3: 8970–8980

    Article  Google Scholar 

  14. Niu G, Li W, Meng F, et al. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in allsolid- state hybrid solar cells. J Mater Chem A, 2014, 2: 705–710

    Article  Google Scholar 

  15. Leijtens T, Eperon GE, Noel NK, et al. Stability of metal halide perovskite solar cells. Adv Energy Mater, 2015, 5: 1500963

    Article  Google Scholar 

  16. Pearson AJ, Eperon GE, Hopkinson PE, et al. Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3-xClx perovskite solar cells: kinetics and mechanisms. Adv Energy Mater, 2016, 6: 1600014

    Article  Google Scholar 

  17. Xiao Z, Yuan Y, Shao Y, et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat Mater, 2015, 14: 193–198

    Article  Google Scholar 

  18. Burschka J, Pellet N, Moon SJ, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499: 316–319

    Article  Google Scholar 

  19. Liu M, Johnston MB, Snaith HJ. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501: 395–398

    Article  Google Scholar 

  20. Chen Q, Zhou H, Hong Z, et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J Am Chem Soc, 2014, 136: 622–625

    Article  Google Scholar 

  21. Xiao M, Huang F, HuangW, et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew Chem, 2014, 126: 10056–10061

    Article  Google Scholar 

  22. Jeon NJ, Noh JH, Kim YC, et al. Solvent engineering for highperformance inorganic–organic hybrid perovskite solar cells. Nat Mater, 2014, 13: 897–903

    Article  Google Scholar 

  23. Guerrero A, You J,ArandaC, et al. Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano, 2016, 10: 218–224

    Article  Google Scholar 

  24. Schulz P, Edri E, Kirmayer S, et al. Interface energetics in organometal halide perovskite-based photovoltaic cells. Energy Environ Sci, 2014, 7: 1377–1381

    Article  Google Scholar 

  25. Wang JTW, Ball JM, Barea EM, et al. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett, 2014, 14: 724–730

    Article  Google Scholar 

  26. Nagaoka H, Ma F, de Quilettes DW, et al. Zr incorporation into TiO2 electrodes reduces hysteresis and improves performance in hybrid perovskite solar cells while increasing carrier lifetimes. J Phys Chem Lett, 2015, 6: 669–675

    Article  Google Scholar 

  27. Wojciechowski K, Stranks SD,AbateA, et al. Heterojunctionmodification for highly efficient organic–inorganic perovskite solar cells. ACS Nano, 2014, 8: 12701–12709

    Article  Google Scholar 

  28. Kim J, Kim G, Kim TK, et al. Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol-gel ZnO electron collection layer. J Mater Chem A, 2014, 2: 17291–17296

    Article  Google Scholar 

  29. Zhang F, Ma W, Guo H, et al. Interfacial oxygen vacancies as a potential cause of hysteresis in perovskite solar cells. Chem Mater, 2016, 28: 802–812

    Article  Google Scholar 

  30. Li Y, Zhao Y, Chen Q, et al. Multifunctional fullerene derivative for interface engineering in perovskite solar cells. J Am Chem Soc, 2015, 137: 15540–15547

    Article  Google Scholar 

  31. Zuo L, Gu Z, Ye T, et al. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J Am Chem Soc, 2015, 137: 2674–2679

    Article  Google Scholar 

  32. Ke W, Fang G, Wan J, et al. Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nat Commun, 2015, 6: 6700

    Article  Google Scholar 

  33. Li SS, Chang CH, Wang YC, et al. Intermixing-seeded growth for high-performance planar heterojunction perovskite solar cells assisted by precursor-capped nanoparticles. Energy Environ Sci, 2016, 9: 1282–1289

    Article  Google Scholar 

  34. Guo X, Dong H, Li W, et al. Multifunctional MgO layer in perovskite solar cells. ChemPhysChem, 2015, 16: 1727–1732

    Article  Google Scholar 

  35. Leijtens T, Eperon GE, Pathak S, et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat Commun, 2013, 4: 2885

    Article  Google Scholar 

  36. Li W, Zhang W, Van Reenen S, et al. Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy Environ Sci, 2016, 9: 490–498

    Article  Google Scholar 

  37. Ito S, Tanaka S, Manabe K, et al. Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells. J Phys Chem C, 2014, 118: 16995–17000

    Article  Google Scholar 

  38. Cappel UB, Daeneke T, Bach U. Oxygen-induced doping of spiro- MeOTAD in solid-state dye-sensitized solar cells and its impact on device performance. Nano Lett, 2012, 12: 4925–4931

    Article  Google Scholar 

  39. Li W, Dong H, Wang L, et al. Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination. J Mater Chem A, 2014, 2: 13587–13592

    Article  Google Scholar 

  40. Li W, Dong H, Guo X, et al. Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells. J Mater Chem A, 2014, 2: 20105–20111

    Article  Google Scholar 

  41. Li J, Li W, Dong H, et al. Enhanced performance in hybrid perovskite solar cell by modification with spinel lithium titanate. J Mater Chem A, 2015, 3: 8882–8889

    Article  Google Scholar 

  42. Li W, Li J, Wang L, et al. Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance. J Mater Chem A, 2013, 1: 11735–11740

    Article  Google Scholar 

  43. Dong X, Fang X, LvM, et al. Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition. J Mater Chem A, 2015, 3: 5360–5367

    Article  Google Scholar 

  44. Li X, Ibrahim Dar M, Yi C, et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ammonium chlorides. Nat Chem, 2015, 7: 703–711

    Article  Google Scholar 

  45. Cha M, Da P, Wang J, et al. Enhancing perovskite solar cell performance by interface engineering using CH3NH3PbBr0.9I2.1 quantum dots. J Am Chem Soc, 2016, 138: 8581–8587

    Article  Google Scholar 

  46. Chen Q, Zhou H, Song TB, et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett, 2014, 14: 4158–4163

    Article  Google Scholar 

  47. Li G, Zhu R, Yang Y. Polymer solar cells. Nat Photon, 2012, 6: 153–161

    Article  Google Scholar 

  48. Lim KG, Kim HB, Jeong J, et al. Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function. Adv Mater, 2014, 26: 6461–6466

    Article  Google Scholar 

  49. Jeng JY, Chen KC, Chiang TY, et al. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM Planar-heterojunction hybrid solar cells. Adv Mater, 2014, 26: 4107–4113

    Article  Google Scholar 

  50. Kim JH, Liang PW, Williams ST, et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv Mater, 2015, 27: 695–701

    Article  Google Scholar 

  51. Jung JW, Chueh CC, Jen AKY. A low-temperature, solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells. Adv Mater, 2015, 27: 7874–7880

    Article  Google Scholar 

  52. Chen W, Wu Y, Yue Y, et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science, 2015, 350: 944–948

    Article  Google Scholar 

  53. Chen W, Wu Y, Liu J, et al. Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells. Energy Environ Sci, 2015, 8: 629–640

    Article  Google Scholar 

  54. Yuan DX, Yuan XD, Xu QY, et al. A solution-processed bathocuproine cathode interfacial layer for high-performance bromine–iodine perovskite solar cells. Phys Chem Chem Phys, 2015, 17: 26653–26658

    Article  Google Scholar 

  55. Malinkiewicz O, Roldán-Carmona C, Soriano A, et al. Metal-oxide-freemethylammoniumlead iodide perovskite-based solar cells: the influence of organic charge transport layers. Adv EnergyMater, 2014, 4: 1400345

    Article  Google Scholar 

  56. Bai S, Wu Z, Wu X, et al. High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Res, 2014, 7: 1749–1758

    Article  Google Scholar 

  57. Zhou Y, Fuentes-Hernandez C, Shim J, et al. A universal method to produce low-work function electrodes for organic electronics. Science, 2012, 336: 327–332

    Article  Google Scholar 

  58. Zhang H, Azimi H, Hou Y, et al. Improved high-efficiency perovskite planar heterojunction solar cells via incorporation of a polyelectrolyte interlayer. Chem Mater, 2014, 26: 5190–5193

    Article  Google Scholar 

  59. Seo J, Park S, ChanKim Y, et al. Benefits of very thinPCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy Environ Sci, 2014, 7: 2642–2646

    Article  Google Scholar 

  60. Jiang LL, Cong S, Lou YH, et al. Interface engineering toward enhanced efficiency of planar perovskite solar cells. J Mater Chem A, 2016, 4: 217–222

    Article  Google Scholar 

  61. Qian M, Li M, Shi XB, et al. Planar perovskite solar cells with 15.75% power conversion efficiency by cathode and anode interfacial modification. J Mater Chem A, 2015, 3: 13533–13539

    Article  Google Scholar 

  62. Chang CY, Chang YC, Huang WK, et al. Enhanced performance and stability of semitransparent perovskite solar cells using solution- processed thiol-functionalized cationic surfactant as cathode buffer layer. Chem Mater, 2015, 27: 7119–7127

    Article  Google Scholar 

  63. Xue Q, Hu Z, Liu J, et al. Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an amino-functionalized polymer interlayer. J Mater Chem A, 2014, 2: 19598–19603

    Article  Google Scholar 

  64. Shao Y, Yuan Y, Huang J. Correlation of energy disorder and opencircuit voltage in hybrid perovskite solar cells. Nat Energy, 2016, 1: 15001

    Article  Google Scholar 

  65. You J, Meng L, Song TB, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotech, 2016, 11: 75–81

    Article  Google Scholar 

  66. Zhu Z, Bai Y, Liu X, et al. Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer. Adv Mater, 2016, 28: 6478–6484

    Article  Google Scholar 

  67. Wang Q, Dong Q, Li T, et al. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Adv Mater, 2016, doi: 10.1002/adma.201600969

    Google Scholar 

  68. Ku Z, Rong Y, Xu M, et al. Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci Rep, 2013, 3: 3132

    Article  Google Scholar 

  69. Zhou H, Shi Y, Dong Q, et al. Hole-conductor-free, metal-electrode- free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode. J Phys Chem Lett, 2014, 5: 3241–3246

    Article  Google Scholar 

  70. Wei Z, Yan K, Chen H, et al. Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites. Energy Environ Sci, 2014, 7: 3326–3333

    Article  Google Scholar 

  71. Mei A, Li X, Liu L, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345: 295–298

    Article  Google Scholar 

  72. Xu X, Liu Z, Zuo Z, et al. Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Lett, 2015, 15: 2402–2408

    Article  Google Scholar 

  73. Berhe TA, Su WN, Chen CH, et al. Organometal halide perovskite solar cells: degradation and stability. Energy Environ Sci, 2016, 9: 323–356

    Article  Google Scholar 

  74. Li X, Tschumi M, Han H, et al. Outdoor performance and stability under elevated temperatures and long-term light soaking of triplelayer mesoporous perovskite photovoltaics. Energy Tech, 2015, 3: 551–555

    Article  Google Scholar 

  75. Liu L, Mei A, Liu T, et al. Fully printablemesoscopic perovskite solar cells with organic silane self-assembled monolayer. J Am Chem Soc, 2015, 137: 1790–1793

    Article  Google Scholar 

  76. Yan K, Wei Z, Li J, et al. High-performance graphene-based hole conductor-free perovskite solar cells: Schottky junction enhanced hole extraction and electron blocking. Small, 2015, 11: 2269–2274

    Article  Google Scholar 

  77. Li J, Niu G, Li W, et al. Insight into the CH3NH3PbI3/C interface in hole-conductor-free mesoscopic perovskite solar cells. Nanoscale, 2016, 8: 14163–14170

    Article  Google Scholar 

  78. Yu Z, Chen B, Liu P, et al. Stable organic-inorganic perovskite solar cells without hole-conductor layer achieved via cell structure design and contact engineering. Adv Funct Mater, 2016, 26: 4866–4873

    Article  Google Scholar 

  79. Zhang L, Liu T, Liu L, et al. The effect of carbon counter electrodes on fully printable mesoscopic perovskite solar cells. J Mater Chem A, 2015, 3: 9165–9170

    Article  Google Scholar 

  80. Li H, Cao K, Cui J, et al. 14.7% Efficient mesoscopic perovskite solar cells using single walled carbon nanotubes/carbon composite counter electrodes. Nanoscale, 2016, 8: 6379–6385

    Article  Google Scholar 

  81. Cao J, Liu YM, Jing X, et al. Well-defined thiolated nanographene as hole-transporting material for efficient and stable perovskite solar cells. J Am Chem Soc, 2015, 137: 10914–10917

    Article  Google Scholar 

  82. Luo Q, Ma H, Zhang Y, et al. Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells. J Mater Chem A, 2016, 4: 5569–5577

    Article  Google Scholar 

  83. Liu Z, Zhang M, Xu X, et al. p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. Dalton Trans, 2015, 44: 3967–3973

    Article  Google Scholar 

  84. Cao K, Zuo Z, Cui J, et al. Efficient screen printed perovskite solar cells based onmesoscopic TiO2/Al2O3/NiO/carbon architecture. Nano Energy, 2015, 17: 171–179

    Article  Google Scholar 

  85. Liu Z, Zhang M, Xu X, et al. NiO nanosheets as efficient top hole transporters for carbon counter electrode based perovskite solar cells. J Mater Chem A, 2015, 3: 24121–24127

    Article  Google Scholar 

  86. Zhang F, Yang X, Cheng M, et al. Boosting the efficiency and the stability of low cost perovskite solar cells by using CuPc nanorods as hole transport material and carbon as counter electrode. Nano Energy, 2016, 20: 108–116

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liduo Wang  (王立铎).

Additional information

Guangda Niu was born in Hebei, China, in 1988. He received a BSc degree in chemistry (2011) from Nanjing University. Since then, he has been pursuing his PhD degree at Tsinghua University under the supervision of Prof. Liduo Wang. His research interests include the rational design of inorganic-organic hybrid perovskite solar cells, quantum dot sensitized solar cells, and controlled synthesis of nanomaterials.

Liduo Wang is a professor of the Department of Chemistry in Tsinghua University. He received his PhD degree in Nagoya University of Japan in 1995. He has once worked as a visiting scholar in the Department of Chemistry and as a research associate in the Department of Electrical and Electronic Engineering in Hong Kong University of Science and Technology, and a postdoctoral researcher in the Department of Materials Science and Engineering, Tsinghua University. His current research interests include perovskite solar cells, organic-inorganic semiconductor multilayer, and its optoelectronic properties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, G., Li, W., Li, J. et al. Progress of interface engineering in perovskite solar cells. Sci. China Mater. 59, 728–742 (2016). https://doi.org/10.1007/s40843-016-5094-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-016-5094-6

Keywords

Navigation