Skip to main content
Log in

Potentials and challenges towards application of perovskite solar cells

钙钛矿太阳能电池工业化面临的潜力和挑战

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The key progress in the development of solar cells based on mixed organic-inorganic halide perovskite was reviewed. Perovskite solar cells (PSCs) have developed rapidly and achieved highest efficiency exceeding 20% in these years. The origin, working principle and fabrication technology of PSCs are stated, and several promising methods to realize the industrialization of the solar cell modules have been put forward. Meanwhile, two main problems existing in PSCs have been pointed out, hysteresis in the photocurrent density-voltage measurement and the instability of perovskite, which have impacted the application of PSCs seriously. Efforts and study in order to solve these problems are also listed. The fundamental mechanism still needs further investigation so as to improve the performance of PSCs and realize their large-scale application eventually.

摘要

本文对有机-无机杂化钙钛矿太阳能电池的主要发展进程进行了阐述和研究. 钙钛矿电池因其高效率、低成本引起了业界广泛关注,并在短短几年内迅速发展, 最高效率已经超过20%. 本文通过讨论钙钛矿电池的起源、发展、工作原理和结构的变迁, 提出了几种最有可能实现工业化目标的器件制备方案, 并分别对其进行了分析. 同时, 文章指出了目前影响钙钛矿电池产业化发展和应用的两个主要问题: 回滞现象和稳定性, 对其产生的原因进行了分析, 并总结了几种可能的解决办法.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kagan CR. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science, 1999, 286: 945–947

    Article  Google Scholar 

  2. Agarwal V, Faelber K, Schmieder P, et al. High-resolution doublequantum deuterium magic angle spinning solid-state NMR spectroscopy of perdeuterated proteins. J Am Chem Soc, 2009, 131: 2–3

    Article  Google Scholar 

  3. Kojimaa A, Teshimad K, Shiraic Y, Tsutomu Miyasakaa. Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-halide Compounds. 212th ECS Meeting, 2006, Abstract #352

    Google Scholar 

  4. Im JH, Lee CR, Lee JW, et al. 6.5% Efficient perovskite quantumdot- sensitized solar cell. Nanoscale, 2011, 3: 4088–4093

    Article  Google Scholar 

  5. Kim HS, Lee CR, Im JH, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2: 591

    Google Scholar 

  6. Lee MM, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338: 643–647

    Article  Google Scholar 

  7. Chen Q, Zhou H, Hong Z, et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J Am Chem Soc, 2014, 136: 622–625

    Article  Google Scholar 

  8. Burschka J, Pellet N, Moon SJ, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499: 316–319

    Article  Google Scholar 

  9. Snaith HJ. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett, 2013, 4: 3623–3630

    Article  Google Scholar 

  10. Heo JH, Im SH, Noh JH, et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photon, 2013, 7: 486–491

    Article  Google Scholar 

  11. Hodes G, Cahen D. Photovoltaics: perovskite cells roll forward. Nat Photon, 2014, 8: 87–88

    Article  Google Scholar 

  12. Ball JM, Lee MM, Hey A, et al. Low-temperature processed mesosuperstructured to thin-film perovskite solar cells. Energy Environ Sci, 2013, 6: 1739–1743

    Article  Google Scholar 

  13. Bi D, Yang L, Boschloo G, et al. Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J Phys Chem Lett, 2013, 4: 1532–1536

    Article  Google Scholar 

  14. Conings B, Baeten L, De Dobbelaere C, et al. Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach. Adv Mater, 2014, 26: 2041–2046

    Article  Google Scholar 

  15. Liu D, Kelly TL. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photon, 2013, 8: 133–138

    Article  Google Scholar 

  16. Kim HS, Lee JW, Yantara N, et al. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett, 2013, 13: 2412–2417

    Article  Google Scholar 

  17. Chen Q, Zhou H, Fang Y, et al. The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells. Nat Commun, 2015, 6: 7269

    Article  Google Scholar 

  18. Wei J, Zhao Q, Li H, et al. Perovskite solar cells: promise of photovoltaics. Sci Sin Tech, 2014, 44: 801–821

    Google Scholar 

  19. Etgar L, Gao P, Xue Z, et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc, 2012, 134: 17396–17399

    Article  Google Scholar 

  20. Liu M, Johnston MB, Snaith HJ. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501: 395–398

    Article  Google Scholar 

  21. Seo J, Park S, ChanKim Y, et al. Benefits of very thinPCBM and LiF layers for solution-processed p-i-n perovskite solar cells. Energy Environ Sci, 2014, 7: 2642

    Article  Google Scholar 

  22. Jeng JY, Chiang YF, Lee MH, et al. CH3NH3PbI3 Perovskite/ fullerene planar-heterojunction hybrid solar cells. Adv Mater, 2013, 25: 3727–3732

    Article  Google Scholar 

  23. Xing G, Wu B, Chen S, et al. Interfacial electron transfer barrier at compact TiO2/CH3NH3PbI3 heterojunction. Small, 2015, 11: 3606–3613

    Article  Google Scholar 

  24. Qin P, Paulose M, Dar MI, et al. Stable and efficient perovskite solar cells based on titania nanotube arrays. Small, 2015, 11: 5533–5539

    Article  Google Scholar 

  25. Nie W, Tsai H, Asadpour R, et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347: 522–525

    Article  Google Scholar 

  26. Xiao Z, Yuan Y, Shao Y, et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat Mater, 2015, 14: 193–198

    Article  Google Scholar 

  27. Grätzel M. The light and shade of perovskite solar cells. NatMater, 2014, 13: 838–842

    Google Scholar 

  28. Snaith HJ, Abate A, Ball JM, et al. Anomalous hysteresis in perovskite solar cells. J Phys Chem Lett, 2014, 5: 1511–1515

    Article  Google Scholar 

  29. Wei J, Zhao Y, Li H, et al. Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells. J Phys Chem Lett, 2014, 5: 3937–3945

    Article  Google Scholar 

  30. Unger EL, Hoke ET, Bailie CD, et al. Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ Sci, 2014, 7: 3690–3698

    Article  Google Scholar 

  31. Shao Y, Xiao Z, Bi C, et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat Commun, 2014, 5: 5784

    Article  Google Scholar 

  32. Motta C, El-Mellouhi F, Kais S, et al. Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. Nat Commun, 2015, 6: 7026

    Article  Google Scholar 

  33. Tress W, Marinova N, Moehl T, et al. Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ Sci, 2015, 8: 995–1004

    Article  Google Scholar 

  34. Chen HW, Sakai N, Ikegami M, et al. Emergence of hysteresis and transient ferroelectric response in organo-lead halide perovskite solar cells. J Phys Chem Lett, 2015, 6: 164–169

    Article  Google Scholar 

  35. Frost JM, Butler KT, Walsh A. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. APL Mater, 2014, 2: 081506

    Article  Google Scholar 

  36. Zhang Y, Liu M, Eperon GE, et al. Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells. Mater Horiz, 2015, 2: 315–322

    Article  Google Scholar 

  37. Eames C, Frost JM, Barnes PRF, et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat Commun, 2015, 6: 7497

    Article  Google Scholar 

  38. Azpiroz JM, Mosconi E, Bisquert J, et al. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ Sci, 2015, 8: 2118–2127

    Article  Google Scholar 

  39. Yang TY, Gregori G, Pellet N, et al. The significance of ion conduction in a hybrid organic-inorganic lead-iodide-based perovskite photosensitizer. Angew Chem Int Ed, 2015, 54: 7905–7910

    Article  Google Scholar 

  40. Kim HS, Park NG. Parameters affecting I-V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer. J Phys Chem Lett, 2014, 5: 2927–2934

    Article  Google Scholar 

  41. Yang WS, Noh JH, Jeon NJ, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348: 1234–1237

    Article  Google Scholar 

  42. Jeon NJ, Noh JH, Yang WS, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517: 476–480

    Article  Google Scholar 

  43. Xu J, Buin A, Ip AH, et al. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat Commun, 2015, 6: 7081

    Article  Google Scholar 

  44. Zhao Y, Wei J, Li H, et al. A polymer scaffold for self-healing perovskite solar cells. Nat Commun, 2016, 7: 10228

    Article  Google Scholar 

  45. Chen W, Wu Y, Yue Y, et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science, 2015, 350: 944–948

    Article  Google Scholar 

  46. Wei J, Li H, Zhao Y, et al. Suppressed hysteresis and improved stability in perovskite solar cells with conductive organic network. Nano Energy, 2016, 26: 139–147

    Article  Google Scholar 

  47. Mei A, Li X, Liu L, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345: 295–298

    Article  Google Scholar 

  48. Zhou H, Chen Q, Li G, et al. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345: 542–546

    Article  Google Scholar 

  49. Berhe TA, Su WN, Chen CH, et al. Organometal halide perovskite solar cells: degradation and stability. Energy Environ Sci, 2016, 9: 323–356

    Article  Google Scholar 

  50. Xiong J, Yang B, Cao C, et al. Interface degradation of perovskite solar cells and its modification using an annealing-free TiO2 NPs layer. Organic Electrons, 2016, 30: 30–35

    Article  Google Scholar 

  51. Reese MO, Nardes AM, Rupert BL, et al. Photoinduced degradation of polymer and polymer-fullerene active layers: experiment and theory. Adv Funct Mater, 2010, 20: 3476–3483

    Article  Google Scholar 

  52. You J, Yang YM, Hong Z, et al. Moisture assisted perovskite film growth for high performance solar cells. Appl Phys Lett, 2014, 105: 183902

    Article  Google Scholar 

  53. Eperon GE, Habisreutinger SN, Leijtens T, et al. The importance of moisture in hybrid lead halide perovskite thin film fabrication. ACS Nano, 2015, 9: 9380–9393

    Article  Google Scholar 

  54. You J, Meng L, Song TB, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotech, 2016, 11: 75–81

    Article  Google Scholar 

  55. Noh JH, Im SH, Heo JH, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett, 2013, 13: 1764–1769

    Article  Google Scholar 

  56. Zhou W, Zhao Y, Shi C, et al. Reversible healing effect of water molecules on fully crystallizedmetal-halide perovskite film. J Phys Chem C, 2016, 120: 4759–4765

    Article  Google Scholar 

  57. Smith IC, Hoke ET, Solis-Ibarra D, et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew Chem Int Ed, 2014, 53: 11232–11235

    Article  Google Scholar 

  58. Lyu M, Yun JH, Cai M, et al. Organic-inorganic bismuth (III)-based material: a lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites. Nano Res, 2016, 9: 692–702

    Article  Google Scholar 

  59. Habisreutinger SN, Leijtens T, Eperon GE, et al. Carbon nanotube/ polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett, 2014, 14: 5561–5568

    Article  Google Scholar 

  60. Li X, Ibrahim Dar M, Yi C, et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ammonium chlorides. Nat Chem, 2015, 7: 703–711

    Article  Google Scholar 

  61. Zhao Y, Zhu K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem Soc Rev, 2016, 45: 655–689

    Article  Google Scholar 

  62. Lee YH, Luo J, Humphry-Baker R, et al. Unraveling the reasons for efficiency loss in perovskite solar cells. Adv Funct Mater, 2015, 25: 3925–3933

    Article  Google Scholar 

  63. Espinosa N, Hösel M, Jørgensen M, et al. Large scale deployment of polymer solar cells on land, on sea and in the air. Energy Environ Sci, 2014, 7: 855–866

    Article  Google Scholar 

  64. Vak D, van Embden J, Wong WWH, et al. Optically monitored spray coating system for the controlled deposition of the photoactive layer in organic solar cells. Appl Phys Lett, 2015, 106: 033302

    Article  Google Scholar 

  65. Zhang T, Yang M, Zhao Y, et al. Controllable sequential deposition of planar CH3NH3PbI3 perovskite films via adjustable volume expansion. Nano Lett, 2015, 15: 3959–3963

    Article  Google Scholar 

  66. Jung YS, Hwang K, Scholes FH, et al. Differentially pumped spray deposition as a rapid screening tool for organic and perovskite solar cells. Sci Rep, 2016, 6: 20357

    Article  Google Scholar 

  67. Vak D, Kim SS, Jo J, et al. Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation. Appl Phys Lett, 2007, 91: 081102

    Article  Google Scholar 

  68. Barrows AT, Pearson AJ, Kwak CK, et al. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spraydeposition. Energy Environ Sci, 2014, 7: 2944–2950

    Article  Google Scholar 

  69. Wei Z, Chen H, Yan K, et al. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew Chem Int Ed, 2014, 53: 13239–13243

    Article  Google Scholar 

  70. Hwang K, Jung YS, Heo YJ, et al. Toward large scale roll-to-roll production of fully printed perovskite solar cells. AdvMater, 2015, 27: 1241–1247

    Google Scholar 

  71. Søndergaard R, Hösel M, Angmo D, et al. Roll-to-roll fabrication of polymer solar cells. Mater Today, 2012, 15: 36–49

    Article  Google Scholar 

  72. Vak D, Hwang K, Faulks A, et al. Solar cells: 3D printer based slotdie coater as a lab-to-fab translation tool for solution-processed solar cells. Adv Energy Mater, 2015, 5: 1401539

    Article  Google Scholar 

  73. Gong J, Darling SB, You F. Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts. Energy Environ Sci, 2015, 8: 1953–1968

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Zhao  (赵清).

Additional information

Jing Wei is a PhD candidate of the School of Physics at Peking University under the supervision of Prof. Dapeng Yu and Prof. Qing Zhao. She received her BSc degree (2012) from the School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China. She joined Prof. Yu’s group in summer 2012, and she is especially interested in new types of photovoltaic materials and devices.

Dapeng Yu is a Chang Kung Professorship in physics in the School of Physics, Peking University. He received his PhD degree (1993) in the Laboratoire de Physicque des Solides, Université Paris-sud, Orsay, France, and then joined the Department of Physics, Peking University in 1995. His current interests are 1D semiconductor nanowires, transport in low-D materials, and single DNA detection/sequencing via solid state nanopore microscope.

Qing Zhao is an associate professor in the School of Physics, Peking University. She received her PhD degree (2006) from the School of Physics, Peking University. She spent two years working as a post-doctoral fellow in the Department of Bioengineering, University ofWashington, USA. Her current research interests include novel flexible photovoltaic and energy storage devices based on nanostructures, and single molecule detection based on solid-state nanopores.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Shi, C., Zhao, Y. et al. Potentials and challenges towards application of perovskite solar cells. Sci. China Mater. 59, 769–778 (2016). https://doi.org/10.1007/s40843-016-5082-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-016-5082-4

Keywords

Navigation