Skip to main content
Log in

Empirical mapping of ZrCu-based alloys with valence electrons versus transformation temperatures

ZrCu基合金马氏体相变温度与价电子经验图谱

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

An empirical map of martensitic transformation temperatures versus average valence electrons per atom (e v/a) and valence electron concentration (c v) was developed in order to design ZrCu-based shape memory alloys (SMAs). The martensitic transformation temperatures of about 40 different alloys (Ni, Co, Hf, Ag, Ti, Al, Cr, etc.), covering nearly all possible replacements of Zr or Cu, are exhibited. The relationship between transformation temperature and cv or electron density (n) was determined. The results indicate that the transformation temperatures of ZrCu-based alloys gradually decrease until reaching an inflection point at c v = 0.218, above which the transformation temperatures go down. A linear dependence of the transformation temperatures of ZrCu-based alloys on the electron density is revealed by data-fitting. Under the guidance of these contour maps describing transformation temperatures and thermal hysteresis, a series of ZrCu-based alloys that can function under different conditions can be designed.

摘要

本文建立了一个关于马氏体相变温度和价电子数及电子浓度的经验图谱并设计了一系列ZrCu基形状记忆合金. 这些相变温度包括了所有报道过的经Ni、Co、Hf、Ag、Ti、Al、Cr等掺杂替换Zr或者Cu原子的约40种合金. 反映了转变温度和电子浓度或者电子密度之间的关系. 结果显示ZrCu基合金的转变温度逐渐下降, 当c v > 0.218时, 相变温度急剧下降. ZrCu基合金的马氏体相变温度与电子密度呈线性关系. 基于相变温度和滞后图谱的结果可以设计出在不同条件下工作的ZrCu基合金.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Otsuka K, Wayman CM. Shape Memory Materials. Cambridge: Cambridge University Press, 1998

    Google Scholar 

  2. Emre A, Osman EO, Haluk EK. Experimental investigation and modeling of the loading rate and temperature dependent superelastic response of a high performance shape-memory alloy. Smart Mater Struct, 2015, 24: 075020

    Article  Google Scholar 

  3. Ma J, Karaman I, Noebe RD. High temperature shape memory alloy. Int Mater Rev, 2010, 55: 257–315

    Article  Google Scholar 

  4. Firstov GS, Humbeeck JV, Koval YN. Comparison of high temperature shape memory behavior for ZrCu-based, Ti-Ni-Zr and Ti-Ni-Hf alloys. Scr Mater, 2004, 50: 243–248

    Article  Google Scholar 

  5. Meng XL, Gao WH, Gao ZY, Cai W, Zhao LC. Substructure and interface of the superstructure martensitic in Zr50Cu50 high temperature shape memory alloy. Mater Lett, 2014, 117: 221–224

    Article  Google Scholar 

  6. Gao WH, Meng XL, Cai W, Zhao LC. Martensite structure and phase transformation of quaternary ZrCuAlCo high temperature shape memory alloys. J. Alloys Comp, 2014, 607: 99–103

    Article  Google Scholar 

  7. Hofmann DC. Shape memory bulk metallic glass composites. Science, 2010, 329: 1294

    Article  Google Scholar 

  8. Pauly S, Liu G, Wang G, et al. Modeling deformation behavior of Cu-Zr-Al bulk metallic glass matrix composites. Appl Phys Lett, 2009, 95: 101906

    Article  Google Scholar 

  9. Song GB, Ma N, Lee HJ, Arnold S. Design and control of a proofof-concept variable area exhaust nozzle using shape-memory alloy actuators. Smart Mater Struct, 2007, 16: 1342–1347

    Article  Google Scholar 

  10. Glock S, Michaud VT. Thermal and damping behaviour of magnetic shape memory alloy composites. Smart Mater Struct, 2015, 24: 065025

    Article  Google Scholar 

  11. Zarinejad M, Liu Y. Dependence of transformation temperatures of NiTi-based shape-memory alloys on the number and concentration of valence electrons. Adv Funct Mater, 2008, 18: 1–6

    Article  Google Scholar 

  12. Zarinejad M, Liu Y, Tong YX. Transformation temperature changes due to second phase precipitation in NiTi-based shape memory alloys. Intermetallics, 2009, 17: 914–919

    Article  Google Scholar 

  13. Zarinejad M, Liu Y. Dependence of Transformation Temperatures of Shape-memory Alloys on the Number and Concentration of Valence Electrons. New York: Nova Science Publishers Inc, 2010: 339–360

    Google Scholar 

  14. Huang YJ, Hu QD, Li JG. Des ign in Ni-Mn-In magnetic shape-memory alloy using compositional maps. Appl Phys Lett, 2012, 101: 222403

    Article  Google Scholar 

  15. Sutou Y, Imano Y, Koeda N, et al. Magnetic and martensitic transformations of NiMnX (X=In,Sn,Sb)…ferromagnetic shape memory alloys. Appl Phys Lett, 2004, 85: 4358

    Article  Google Scholar 

  16. Jin X, Marioni M, Bono D, Allen SM, O’Handley RC. Empirical mapping of Ni-Mn-Ga properties with composition and valence electron concentration. J Appl Phys, 2002, 91: 8222–8224

    Article  Google Scholar 

  17. Koval YN, Firstov GS, Kotko AV. Martensitic transformation and shape memory effect in Zr-Cu intermetallic compound. Scr Metall et Mater, 1992, 27: 1611–1616

    Article  Google Scholar 

  18. Biffi CA, Figini A, Tuissi A. Influence of compositional ratio on microstructure and martensitic transformation of CuZr shape memory alloys. Intermetallics, 2014, 46: 4–11

    Article  Google Scholar 

  19. Firstov GS, Koval YN, Humbeeck JV, et al. Phase transformations in Zr–29.56 at.% Cu–19.85 at.%Ni melt-spun high-temperature shape memory alloy. Mater Sci Eng A, 2006, 438-440: 816–820

    Article  Google Scholar 

  20. Biffi CA, Figini A, Tuissi A. CuZr based shape memory alloys: effect of Cr and Co on the martensitic transformation. Mater Sci Forum, 2013, 738-739: 167–171

    Article  Google Scholar 

  21. Javida FA, Mattern N, Pauly S, Eckert J. Martensitic transformation and thermal cycling effect in Cu-Co-Zr alloys. J Alloys Comp, 2011, 509S: S334–S337

    Article  Google Scholar 

  22. Meng FQ, Tsuchiya K, Ii Seiichiro, Yokoyama Y. Influence of Ni on stability of martensitic transformation in Zr50Cu50-x Nix. J Alloys Comp, 2013, 577S: S136–S140

    Article  Google Scholar 

  23. Meng FQ, Tsuchiya K, Yin FX, Ii S, Yokoyama Y. Influence of Al on stability of martensitic transformation in Zr50Cu50-x Alx. J Alloys Comp, 2012, 522: 136–140

    Article  Google Scholar 

  24. Koval YN, Firstov GS, Kotko AV, Delaey L, Humbeeck JV. The influence of Ni and Ti on the martensitic transformation temperature and shape memory effect of the intermetallic compound ZrCu. Scr Metall et Mater, 1994, 31: 799

    Article  Google Scholar 

  25. Firstov GS, Timoshevskii AN, Koval YN, Kalkuta S, Humbeeck JV. Phase stability during martensitic transformation in ZrCu intermetallics: crystal and electronic structure aspects. ESOMAT, 2009, 02008

    Google Scholar 

  26. Zhalko-Titarenkmo AV, Yevlashinva ML, Antonovb VN, et al. Ele ctronic and crystal structure of the ZrCu intermetallic compound close to the point of structural transformation. Phys Status Solidi B, 1994, 184: 122

    Google Scholar 

  27. Wang RL, Yan JB, Xiao HB, et al. Effect of electron density on the martensitic transition in Ni-Mn-Sn alloys. J Alloys Comp, 2011, 509: 6834–6837

    Article  Google Scholar 

  28. Seo JW, Schryvers D. TEM investigation of the microstructure and defects of CuZr martensite. Part I: morphology and twin systems. Acta Mater, 1998, 46: 1165–1175

    Google Scholar 

  29. Firstov GS, Humbeeck JV, Koval YN. Peculiarities of the martensitic transformation in ZrCu intermetallic compound-potential high temperature SMA. J Phys IV, 2001, 11: 481–486

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianglong Meng  (孟祥龙).

Additional information

Weihong Gao is currently a PhD candidate in the Department of Material Physics and Chemistry at Harbin Institute of Technology, China. She received his BSc degree and MSc degree majored in material physics and chemistry at Harbin Engineering University. Her current research is mainly on martensite phase transformation; microstructure and interface of high temperature shape memory alloys.

Xianglong Meng is currently a professor at Harbin Institute of Technology. He obtained his PhD degree from Harbin Institute of Technology in 2004. His research interests focus mainly on high temperature shape memory alloys, martensitic transformation and microstructure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Meng, X., Song, G. et al. Empirical mapping of ZrCu-based alloys with valence electrons versus transformation temperatures. Sci. China Mater. 59, 151–157 (2016). https://doi.org/10.1007/s40843-016-0124-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-016-0124-z

Keywords

Navigation