Science China Materials

, Volume 58, Issue 11, pp 867–876 | Cite as

Photocatalytic water oxidation by layered Co/h-BCN hybrids

  • Mingwen Zhang
  • Zhishan Luo
  • Min Zhou
  • Caijin Huang
  • Xinchen Wang
Articles

Abstract

A hexagonal boron carbon nitride (h-BCN) semiconductor was applied to intercalate cobalt ions to catalyze oxygen evolution reaction (OER) with light illumination, without using noble metals. The h-BCN with high specific surface area showed a strong chemical affinity towards metal ions due to the “lop-sided” densities characteristic of ionic B–N bonding, enabling the creation of metal/h-BCN hybrid layered structures with unique properties. As exemplified here by Co/h-BCN for water oxidation catalysis, after intercalating cobalt ions in the h-BCN host, the photocatalytic activity of the resultant layered hybrid is optimized due to their synergic catalysis that promotes charge separation and lowers reaction barriers. This finding promises a new nobel-metal-free nanocompsite using cost-acceptable and earth-abundant sust ances for photocatalytic OER, and enables the facile design of duel catalytic cascades by merging transition metal catalysis with h-BCN (photo)catalysis for energy and sustainability.

中文摘要

本文利用六方相硼氮碳(h-BCN)半导体光催化剂吸附钴离子, 构筑不含任何贵金属成分的光催化体系, 在可见光照射下, 实现水的催化氧化生成氧气反应. h-BCN半导体材料由于B–N离子键的“lop-sided”效应, 对金属离子具有很强的化学亲和性, 利用此性质并结合其高比表面积的特性, 制备出了一系列具有特殊性能的金属/h-BCN杂化层状结构. 研究结果表明, 在钴离子镶嵌的h-BCN(Co/h-BCN)杂化材料中, 金属和载体之间的协同作用能有效促进光生载流子分离、降低反应活化能, 进而提高光催化氧化水产氧性能. 本文展示了利用廉价和地球高丰度元素构筑不含贵金属成份的纳米层状复合材料, 有望将过渡金属催化和h-BCN光催化耦合, 实现面向可持续能源转换的协同催化过程.

Supplementary material

40843_2015_100_MOESM1_ESM.pdf (3.2 mb)
Supplementary material, approximately 3328 KB.

References

  1. 1.
    Gratzel M. Photoelectrochemcial cells. Nature, 2001, 414: 338–344CrossRefGoogle Scholar
  2. 2.
    Maeda K, Teramura K, Lu D, et al. Photocatalyst releasing hydrogen from water. Nature, 2006, 440: 295–295CrossRefGoogle Scholar
  3. 3.
    Blankenship RE, Tiede DM, Barber J, et al. Comparing the efficiency of photosynthesis with photovoltaic devices and recognizing opportunities for improvement. Science, 2011, 332: 805–809CrossRefGoogle Scholar
  4. 4.
    Hou Y, Abrams BL, Vesborg PCK, et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat Mater, 2011, 10: 434–438CrossRefGoogle Scholar
  5. 5.
    Ma TY, Ran J, Dai S, Jaroniec M, Qiao SZ. Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: flexible and reversible oxygen electrodes. Angew Chem Int Ed, 2015, 54: 4646–4650CrossRefGoogle Scholar
  6. 6.
    Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev, 2014, 43: 7787–7812CrossRefGoogle Scholar
  7. 7.
    Toma FM, Sartorel A, Iurlo M, et al. Efficient water oxidation at carbon nanotube-polyoxometalate electrocatalytic interfaces. Nat Chem. 2010, 2: 826–831CrossRefGoogle Scholar
  8. 8.
    Duan L, Bozoglian F, Mandal S, et al. A molecular ruthenium catalyst withwater-oxidation activity comparable to that ofphotosystem II. Nat Chem, 2012, 4: 418–423CrossRefGoogle Scholar
  9. 9.
    Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev, 2009, 38: 253–278.CrossRefGoogle Scholar
  10. 10.
    Maeda K, Domen K. Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett, 2010, 1: 2655–2661CrossRefGoogle Scholar
  11. 11.
    Yeh TF, Syu JM, Cheng C, Chang TH, Teng H. Graphite oxide as a photocatalyst for hydrogen production from water. Adv Funct Mater, 2010, 20: 2255–2262CrossRefGoogle Scholar
  12. 12.
    Qu Y, Zhong X, Li Y, et al. Photocatalytic properties of porous silicon nanowires. J Mater Chem, 2010, 20: 3590-3594Google Scholar
  13. 13.
    Wang F, Ng WKH, Yu JC, et al. Red phosphorus: an elemental photocatalyst for hydrogen formation from water. Appl Catal B, 2012, 111–112, 409–414Google Scholar
  14. 14.
    Liu G, Niu P, Yin L, Cheng HM. α-Sulfur crystals as a visible-light-active phot ocatalyst. J Am Chem Soc, 2012, 134: 9070–9073CrossRefGoogle Scholar
  15. 15.
    Liu G, Yin YC, Niu P, Jiao W, Cheng HM. Visible-light-responsive beta-rhombohedral boron photocatalysts. Angew Chem Int Ed, 2013, 52: 6242–6245CrossRefGoogle Scholar
  16. 16.
    Wang XC, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater, 2009, 8: 76–80CrossRefGoogle Scholar
  17. 17.
    Liu J, Wen S, Hou Y, et al. Visible-light-responsive photocatalysts. Angew Chem Int Ed, 2013, 52: 3241–3245CrossRefGoogle Scholar
  18. 18.
    Sprick RS, Jiang JX, Bonillo B, et al. Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J Am Chem Soc, 2015, 137: 3265–3270CrossRefGoogle Scholar
  19. 19.
    Ghosh S, Kouamé NA, Ramos L, et al. Conducting polymer nanostructures for photocatalysis under visible light. Nat Mater, 2015, 14: 505–511CrossRefGoogle Scholar
  20. 20.
    Schwab MG, Hamburger M, Feng XL, et al. Photocatalytic hydrogen evolution through fully conjugated poly(azomethine) networks. Chem Commun, 2010, 46: 8932–8934CrossRefGoogle Scholar
  21. 21.
    Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669CrossRefGoogle Scholar
  22. 22.
    Aufray B, Kara A, Vizzini S, et al. Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicone. Appl Phys Lett, 2010, 96: 183102CrossRefGoogle Scholar
  23. 23.
    Song L, Liu Z, Reddy ALM, et al. Binary and ternary atomic layers built from carbon, boron, and nitrogen. Adv Mater, 2012, 24, 4878–4895CrossRefGoogle Scholar
  24. 24.
    Hou YD, Laursen AB, Zhang JS, et al. Layered nanojunctions for hydrogen-evolution catalysis. Angew Chem Int Ed, 2013, 52: 3621–3625CrossRefGoogle Scholar
  25. 25.
    Yang HG, Liu G, Qiao SZ, et al. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J Am Chem Soc, 2009, 131: 4078–4083CrossRefGoogle Scholar
  26. 26.
    Chhowalla M, Shin HS, Eda G, et al. The chemistry of twodimensional layered transition metal dichalcogenide nanosheets. Nat Chem, 2013, 5: 263–275CrossRefGoogle Scholar
  27. 27.
    Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater, 2004, 3: 404–409CrossRefGoogle Scholar
  28. 28.
    Gong Y, Shi G, Zhang Z, et al. Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers. Nat Commun, 2014, 5: 3193Google Scholar
  29. 29.
    Wang X, Zhi C, Li L, et al. “Chemical blowing” of thin-walled bubbles: high-throughput fabrication of large-area, few-layered BN and Cx-BN nanosheets. Adv Mater, 2011, 23: 4072–4076CrossRefGoogle Scholar
  30. 30.
    Wang S, Zhang L, Xia Z, et al. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew Chem Int Ed, 2012, 51: 4209–4212CrossRefGoogle Scholar
  31. 31.
    Zhuang X, Mai Y, Wu D, Zhang F, Feng X. Two-dimensional soft nanomaterials: a fascinating world of materials. Adv Mater, 2015, 27: 403–427CrossRefGoogle Scholar
  32. 32.
    Huang CJ, Chen C, Zhang MW, et al. Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nat Commun, 2015, 6: 7698CrossRefGoogle Scholar
  33. 33.
    Mazzoni MSC, Nunes RW, Azevedo S, Chacham H. Electronic structure and energetics of BxCyNz layered structures. Phys Rev B, 2006, 73: 073108CrossRefGoogle Scholar
  34. 34.
    Watanabe MO, Itoh S, Sasaki T, Mizushima K. Visible-light-emitting layered BC2N semiconductor. Phys Rev Lett, 1996, 77: 187–189CrossRefGoogle Scholar
  35. 35.
    Lei W, Portehault D, Dimova R, Antonietti M. Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors. J Am Chem Soc, 2011, 133: 7121–7127CrossRefGoogle Scholar
  36. 36.
    Li J, Xiao X, Xu X, et al. Activated boron nitride as an effective adsorbent for metal ions and organic pollutants. Sci Rep, 2013, 3: 3208Google Scholar
  37. 37.
    Lei W, Portehault D, Liu D, Qin S, Chen Y. Porous boron nitride nanosheets for effective water cleaning. Nat Commun, 2013, 4: 1777CrossRefGoogle Scholar
  38. 38.
    Wang SB, Ding ZX, Wang XC. A stable ZnCo2O4 cocatalyst for photocatalytic CO2 reduction. Chem Commun, 2015, 51: 1517–1519CrossRefGoogle Scholar
  39. 39.
    Chen S, Shen S, Liu G, et al. Interface engineering of a CoOx/Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light-irradiation. Angew Chem Int Ed, 2015, 127: 3090–3094CrossRefGoogle Scholar
  40. 40.
    Wang SB, Wang XC. Multifunctional metal-organic frameworks for photocatalysis. Small, 2015, 11: 3097–3112CrossRefGoogle Scholar
  41. 41.
    Hyman MP, Vohs JM. Reaction of ethanol on oxidized and metallic cobalt surfaces. Surf Sci, 2011, 605: 383–389CrossRefGoogle Scholar
  42. 42.
    Zhang JS, Grzelczak M, Hou YD, et al. Photocatalytic oxidation of water by polymeric carbon nitride nanohybrids made of sustainable elements. Chem Sci, 2012, 3: 443–446CrossRefGoogle Scholar
  43. 43.
    Vakros J, Bourikas K, Perlepes S, Kordulis C, Lycourghiotis A. Adsorption of cobalt ions on the “electrolytic solution/γ-alumina” interface studied by diffuse reflectance spectroscopy (DRS). Langmuir, 2004, 20: 10542–10550CrossRefGoogle Scholar
  44. 44.
    Zhang JS, Zhang MW, Sun RQ, Wang XC. A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew Chem Int Ed, 2012, 51: 10145–10149CrossRefGoogle Scholar
  45. 45.
    Zhang GG, Huang CJ, Wang XC. Dispersing molecular cobalt in graphitic carbon nitride frameworks for photocatalytic water oxidation. Small, 2015, 11: 1215–1221CrossRefGoogle Scholar
  46. 46.
    Zhang GG, Zang SH, Wang XC. Layered Co(OH)2 deposited polymeric carbon nitrides for photocatalytic water oxidation. ACS Catal, 2015, 5: 941–947CrossRefGoogle Scholar
  47. 47.
    Zhang GG, Zang SH, Lan ZA, et al. Cobalt selenide: a versatile cocatalyst for photocatalytic water oxidation with visible light. J Mater Chem A, 2015, 3: 17946–17950CrossRefGoogle Scholar
  48. 48.
    Zheng Y, Lin LH, Wang B, Wang XC. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew Chem In Ed, 2015, 54: 12868–1288CrossRefGoogle Scholar
  49. 49.
    Zhang JS, Chen Y, Wang XC. Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications. Energy Environ Sci, 2015, 8: 3092–3108CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Mingwen Zhang
    • 1
  • Zhishan Luo
    • 1
  • Min Zhou
    • 1
  • Caijin Huang
    • 1
  • Xinchen Wang
    • 1
  1. 1.State Key Laboratory of Photocatalysis on Energy and Environment, College of ChemistryFuzhou UniversityFuzhouChina

Personalised recommendations