Skip to main content
Log in

Measuring room-temperature intrinsic multiferroic properties by excluding the secondary magnetic inclusion contribution

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The assertion that a new material could become a potential single-phase and room-temperature functioning multiferroic material may be confounded by the presence of minor amount of secondary magnetic inclusions, especially in the Aurivilliustype material system. In this study, we demonstrated that the derivative thermo-magneto-gravimetry (DTMG) technique can be a sensitive tool to identify an d quantify the magnetic secondary phases in the Bi7Fe2.25Co0.75Ti3O21 ceramic, which shows the potential to become a single-phase multiferroic material. The accuracy of this DTMG measurement experimentally reaches to ~0.5 wt.%, far below the detection limit of the traditional X-ray diffraction. The impurity identified in the specimen is the ferrimagnetic CoFe2O4 spinel phase with an amount of ~3.6 wt.%. Significantly, the room-temperature intrinsic magnetism of the ceramic was measured, which is sorely from the main phase.

中文摘要

判断新的材料是否是一个室温单相多铁性材料需要认真的鉴定评价, 特别是对于Aurivillius 相多铁材料. 这类材料中易生 成微量的具有铁磁性的杂质, 从而混淆对其本征磁性能的判断. 本论文介绍了一种磁失重方法, 并应用该方法判断和量化了Aurivillius 相层状结构陶瓷Bi7Fe2.25Co0.75Ti3O21中的磁性杂质. 该方法的测量精度远高于X-射线仪器的精度, 能够辨别出含量仅为0.5%重量的杂质. 最终结果表明陶瓷B i7Fe2.25Co0.75Ti3O21中的磁性杂质是尖晶石相CoFe2O4, 其含量约占总质量的3.6%. 通过该方法同时确定了该陶瓷的室 温固有磁性. 本研究不仅展示了磁失重方法, 而且通过固有磁性和固有铁电性的鉴定, 证明了该陶瓷是一种新的室温单相多铁性材料.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spaldin NA, Cheong SW, Ramesh R. Multiferroics: past, present, and future. Phys Today, 2010, 63: 38–43

    Article  Google Scholar 

  2. Hill NA. Why are there so few magnetic ferroelectrics? J Phys Chem B, 2000, 104: 6694–6709

    Article  Google Scholar 

  3. Eerenstein W, Mathur ND, Scott JF. Multiferroic and magnetoelectric materials. Nature, 2006, 442: 759–765

    Article  Google Scholar 

  4. Krzhizhanovskaya M, Filatov S, Gusarov V, et al. Aurivillius phases in the Bi4Ti3O12/BiFeO3 system: thermal behaviour and crystal structure. Z Anorg Allge Chem, 2005, 631: 1603–1608

    Article  Google Scholar 

  5. Zhao H, Kimura H, Cheng Z. et al. Large magnetoelectric coupling in magnetically short-range ordered Bi5Ti3FeO15 film. Sci Rep, 2014, 4: 5255

    Google Scholar 

  6. Li XN, Ju Z, Li F, et al. Visible light responsive Bi7Fe3Ti3O21 nanoshelf photocatalysts with ferroelectricity and ferromagnetism. J Mater Chem A, 2014, 2: 13366–13372

    Article  Google Scholar 

  7. Wang JL, Fu ZP, Peng RR, et al. Low magnetic field response single- phase multiferroics under high temperature. Mater Horiz, 2015, 2: 232–236

    Article  Google Scholar 

  8. Yuan B, Yang J, Chen J, et al. Magnetic and dielectric properties of Aurivillius phase Bi6Fe2Ti3−2x NbxCoxO18 (0 ≤ x ≤ 0.4). Appl Phys Lett, 2014, 104: 062413

    Article  Google Scholar 

  9. Sun SJ, Wang GP, Huang Y, et al. Structural transformation and multiferroic properties in Gd-doped Bi7Fe3Ti3O21 ceramics. RSC Adv, 2014, 4: 30440–30446

    Article  Google Scholar 

  10. Mao XY, Sun H, Wang W, et al. Ferromagnetic, ferroelectric properties, and magneto-dielectric effect of Bi4.25La0.75Fe0.5Co0.5Ti3O15 ceramics. Appl Phys Lett, 2013, 102: 072904

    Article  Google Scholar 

  11. Mao XY, Wang W, Chen XB, et al. Multiferroic properties of layer- structured Bi5Fe0.5Co0.5Ti3O15 ceramics. Appl Phys Lett, 2009, 95: 082901

    Article  Google Scholar 

  12. Schmidt M, Amann A, Keeney L, et al. Absence of evidence not equal evidence of absence: statistical analysis of inclusions in multiferroic thin films. Sci Rep, 2014, 4: 5712

    Google Scholar 

  13. Palizdar M, Comyn TP, Ward MB, et al. Crystallographic and magnetic identification of secondary phase in orientated Bi5Fe0.5Co0.5Ti3O15 ceramics. J Appl Phys, 2012, 112: 073919

    Article  Google Scholar 

  14. Williams DB, Papworth AJ, Watanabe M. High resolution X-ray m apping in the STEM. J Electron Microsc, 2002, 51: S113–S126

    Article  Google Scholar 

  15. Moskalewicz R, Zych W. Application of the DTMG-DTA(M) technique for the curie-point and crystallization temperature determinature of Fe80−x MnxB20 amorphous-alloys. Phys Status Solidi A-Appl Res, 1986, 97: K43–K48

    Article  Google Scholar 

  16. Li XN, Zhu Z, Feng L, et al. Facile route to prepare grain-oriented multiferroic Bi7Fe3−x CoxTi3O21 ceramics. J Eur Ceram Soc, 2015, 35: 3437–3443

    Article  Google Scholar 

  17. Keeney L, Kulkarni S, Deepak N, et al. Room temperature ferroelectric and magnetic investigations and detailed phase analysis of Aurivillius phase Bi5Ti3Fe0.7Co0.3O15 thin films. J Appl Phys, 2012, 112: 024101

    Article  Google Scholar 

  18. Srinivas A, Kumar MM, Suryanarayana SV. Investigation of dielectric and magnetic nature of Bi7Fe3Ti3O21. Mater Res Bull,1999, 34: 989–996

    Article  Google Scholar 

  19. Lu SZ, Qi XD. Magnetic and dielectric properties of nanostructured BiFeO3 prepared by sol–gel method. J Am Ceram Soc, 2014, 97: 2185–2194

    Article  Google Scholar 

  20. Zi Z, Sun Y, Zhu Y, et al. Synthesis and magnetic properties of CoFe2O4 ferrite nanoparticles. J Magn Magn Mater, 2009, 321: 1251–1255

    Article  Google Scholar 

  21. Nlebedim IC, Snyder JE, Moses AJ, et al. Effect of deviation from stoichiometric composition on structural and magnetic properties of cobalt ferrite, CoxFe3−x O4 (x = 0.2 to 1.0). J Appl Phys, 2012, 111: 07D704

    Article  Google Scholar 

  22. Suzuki T, Nagai H, Nohara M, et al. Melting of antiferromagnetic ordering in spinel oxide CoAl2O4. J Phys Conden Matter, 2007, 19: 145265

    Article  Google Scholar 

  23. Grave ED, Persoons R, Vandenberghe R, et al. Mössbauer study of the high-temperature phase of Co-substituted magnetites, CoxFe3−x O4. Phys Rev B, 1993, 47: 5881–5893

    Article  Google Scholar 

  24. Fujii T, de Groot FMF, Sawatzky GA. In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys Rev B, 1999, 59: 3195–3202

    Article  Google Scholar 

  25. Mitra S, Das S, Mandal K, et al. Synthesis of a α-Fe2O3 nanocrystal in its different morphological attributes: growth mechanism, optical and magnetic properties. Nanotechnology, 2007, 18: 275608

    Article  Google Scholar 

  26. Muralidharan R, Dix D, Skumryev V, et al. Synthesis, structure, and magnetic studies on self-assembled BiFeO3-CoFe2O4 nanocomposite thin films. J Appl Phys, 2008, 103: 07E301

    Article  Google Scholar 

  27. Zheng H, Wang J, Mohaddes-Ardabili L, et al. Three-dimensional heteroepitaxy in self-assembled BaTiO3-CoFe2O4 nanostructures. Appl Phys Lett, 2004, 85: 2035–2037

    Article  Google Scholar 

  28. Li J, Levin I, Slutsker J, et al. Self-assembled multiferroic nanostructures in the CoFe2O4-PbTiO3 system. Appl Phys Lett, 2005, 87: 072909

    Article  Google Scholar 

  29. Mao XY, He JH, Zhu J, et al. Structural, ferroelectric, and dielectric properties of vanadium-doped Bi4−x/3Ti3−x VxO12. J Appl Phys, 2006, 100: 044104

    Article  Google Scholar 

  30. Hu GD, Cheng X, Wu WB, et al. Effects of Gd substitution on structure and ferroelectric properties of BiFeO3 thin films prepared using metal organic decomposition. Appl Phys Lett, 2007, 91: 232909

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ranran Peng or Yalin Lu.

Additional information

Shujie Sun is currently a PhD candidate of materials science at the Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, China. His scientific interests are mainly focused on the structure and properties of complex oxides materials.

Yalin Lu is a full professor of the USTC. He is now Director of National Synchrotron Radiation Laboratory, Deputy Director of Hefei Science Center. Before joining the USTC, he was a visiting professor at Lawrence Berkeley National Laboratory (1996–1998), a research professor in electrical engineering at Tufts University (1998–2000) and a full professor in physics at the US Air Force Academy (2003–2012). His research group in the USTC works on materials for energy conversion, THz optics and materials, optoelectronics, and complex oxides materials physics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Liu, C., Peng, R. et al. Measuring room-temperature intrinsic multiferroic properties by excluding the secondary magnetic inclusion contribution. Sci. China Mater. 58, 791–798 (2015). https://doi.org/10.1007/s40843-015-0087-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-015-0087-5

Keywords

Navigation