Skip to main content

Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries

Abstract

The need for economical and sustainable energy storage drives battery research today. While Li-ion batteries are the most mature technology, scalable electrochemical energy storage applications benefit from reductions in cost and improved safety. Sodium- and magnesium-ion batteries are two technologies that may prove to be viable alternatives. Both metals are cheaper and more abundant than Li, and have better safety characteristics, while divalent magnesium has the added bonus of passing twice as much charge per atom. On the other hand, both are still emerging fields of research with challenges to overcome. For example, electrodes incorporating Na+ are often pulverized under the repeated strain of shuttling the relatively large ion, while insertion and transport of Mg2+ is often kinetically slow, which stems from larger electrostatic forces. This review provides an overview of cathode and anode materials for sodium-ion batteries, and a comprehensive summary of research on cathodes for magnesium-ion batteries. In addition, several common experimental discrepancies in the literature are addressed, noting the additional constraints placed on magnesium electrochemistry. Lastly, promising strategies for future study are highlighted.

中文摘要

对于经济和可持续能源存储设备的需求促进了当今电池的研究. 锂离子电池是目前最成熟的技术, 但是电化学储能的应用 可通过降低成本和提高安全性进一步扩大. 钠和镁离子电池有可能成为两种可行的替代技术. 这两种金属比锂更便宜、储量更丰富, 并具有更好的安全特性, 而且二价镁还有一个附加优势, 即每个原子可以传输二倍的电荷. 另一方面, 钠和镁离子电池都还是新兴的研 究领域, 仍有很多挑战需要克服. 例如, 因较大的离子穿梭而造成的重复形变使结合Na+的电极容易粉末化, 而镁离子的插入和传输由 于较大的静电作用力普遍显示出较慢的动力学特性. 本文综述了钠离子电池阴极和阳极材料的概况, 并对镁离子电池阴极的研究进行 了全面总结. 此外, 本综述还讨论了文献中常见的一些实验差异, 指出了镁离子电化学研究的其他限制, 最后, 对未来研究提出了有价 值的观点和策略.

References

  1. IEA. Fossil-fuel subsidies, in: World Energy Outlook 2014. Paris: IEA, 2014: 313

  2. US Energy Information Administration, International Energy Outlook 2013 with Projections to 2040. Washington, DC, 2013. http:// www.eia.gov/forecasts/ieo/pdf/0484(2013).pdf

  3. REN21. Policy Landscape, in: Renewables 2014 Global Status Report. Paris: REN21 Secretariat, 2014: 75–91. http://www.ren21.net/status-of-renewables/global-status-report/

    Google Scholar 

  4. Erickson EM, Ghanty C, Aurbach D. New horizons for conventional lithium ion battery technology. J Phys Chem Lett, 2014, 5: 3313–3324

    Article  Google Scholar 

  5. Wang Y, Liu B, Li Q, et al. Lithium and lithium ion batteries for applications in microelectronic devices: a review. J Power Sources, 2015, 286: 330–345

    Article  Google Scholar 

  6. Nykvist B, Nilsson M. Rapidly falling costs of battery packs for electric vehicles. Nat Clim Change, 2015, 5: 329–332

    Article  Google Scholar 

  7. Sathiya M, Abakumov AM, Foix D, et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat Mater, 2015, 14: 230–238

    Article  Google Scholar 

  8. Sakti A, Michalek JJ, Fuchs ERH, Whitacre JF. A techno-economic ana lysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification. J Power Sources, 2015, 273: 966–980

    Article  Google Scholar 

  9. Yoo HD, Markevich E, Salitra G, Sharon D, Aurbach D. On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater Today, 2014, 17: 110–121

    Article  Google Scholar 

  10. Augustyn V, Come J, Lowe MA, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater, 2013, 12: 518–522

    Article  Google Scholar 

  11. Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed, 2008, 47: 2930–2946

    Article  Google Scholar 

  12. Zhang WJ. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources, 2011, 196: 13–24

    Article  Google Scholar 

  13. Park CM, Kim JH, Kim H, Sohn HJ. Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev, 2010, 39: 3115–3141

    Article  Google Scholar 

  14. Cabana J, Monconduit L, Larcher D, Palacín MR. Beyond intercalation- based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater, 2010, 22: 170–192

    Article  Google Scholar 

  15. Armstrong AR, Bruce PG. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature, 1996, 381: 499–500

    Article  Google Scholar 

  16. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB. LixCoO2 (0<x=1): a new cathode material for batteries of high energy density. Mater Res Bull, 1980, 15: 783–789

    Article  Google Scholar 

  17. Whittingham MS. Electrical energy storage and intercalation chemistry. Science, 1976, 192: 1126–1127

    Article  Google Scholar 

  18. Goodenough JBB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater, 2010, 22: 587–603

    Article  Google Scholar 

  19. Goodenough JBB, Park KSS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc, 2013, 165: 1167–1176

    Article  Google Scholar 

  20. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci, 2011, 4: 3243–3262

    Article  Google Scholar 

  21. Guo YG, Hu JS, Wan LJ. Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater, 2008, 20: 2878–2887

    Article  Google Scholar 

  22. Scrosati B, Garche J. Lithium batteries: status, prospects and future. J Power Sources, 2010, 195: 2419–2430

    Article  Google Scholar 

  23. Palomares V, Serras P, Villaluenga I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci, 2012, 5: 5884–5901

    Article  Google Scholar 

  24. Kim SW, Seo DH, Ma X, Ceder G, Kang K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater, 2012, 2: 710–721

    Article  Google Scholar 

  25. Ellis BL, Nazar LF. Sodium and sodium-ion energy storage batteries. Curr Opin Solid State Mater Sci, 2012, 16: 168–177

    Article  Google Scholar 

  26. Huie MM, Bock DC, Takeuchi ES, Marschilok AC, Takeuchi KJ. Cathode materials for magnesium and magnesium-ion based batteries. Coord Chem Rev, 2015, 287: 15–27

    Article  Google Scholar 

  27. Muldoon J, Bucur CB, Gregory T. Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev, 2014, 114: 11683–11720

    Article  Google Scholar 

  28. Haynes WM. CRC Handbook of Chemi stry and Physics, 93rd Edition. Boca Raton: Taylor & Francis, 2012

    Google Scholar 

  29. Shannon RD. Revised effective ion ic radii and systematic studies of interatomie distances in halides and chaleogenides, Acta Cryst, 1976, 32; 751–767

    Article  Google Scholar 

  30. Slater MD, Kim D, Lee E, Johnson CS, Sodium-ion batteries. Adv Funct Mater, 2013, 23: 947–958

    Article  Google Scholar 

  31. Mohtadi R, Mizuno F. Magnesium batteries: current state of the art, issues and future perspectives. Beilstein J Nanotech, 2014. 5: 1291–311

    Article  Google Scholar 

  32. Shterenberg I, Salama M, Gofer Y, Levi E, Aurbach D. The challenge of developing rechargeable magnesium batteries. MRS Bull, 2014, 39: 453–460

    Article  Google Scholar 

  33. Islam MS, Fisher CAJ. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem Soc Rev, 2014, 43: 185–204

    Article  Google Scholar 

  34. Haxel GB, Hedrick JB, Orris GJ. Rare earth elements: critical resources for high technology. Reston: US Geological Survey, 2002. http://pubs.usgs.gov/fs/2002/fs087-02

    Google Scholar 

  35. US Geological Survey. Mineral Commodity Summaries 2015, Reston: US Geological Survey, 2015.

    Book  Google Scholar 

  36. Zu CX, Li H. Thermodynamic analysis on energy densities of batteries. Energy Environ Sci, 2015, 41: 2614–2624

    Google Scholar 

  37. Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev, 2014, 114: 11636–11682

    Article  Google Scholar 

  38. Mikkor M. Graphite aluminum- and silicon carbide-coated current collectors for sodium-sulfur cells. J Electrochem Soc, 1985, 132: 991–998

    Article  Google Scholar 

  39. Hudak N, Huber D. Nanostructured lithium-aluminum alloy electrodes for lithium-ion batteries. ECS Trans, 2011, 33: 1–13

    Article  Google Scholar 

  40. Ong SP, Chevrier VL, Hautier G, et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ Sci, 2011, 4: 3680–3688

    Article  Google Scholar 

  41. Kim Y, Park Y, Choi A, et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv Mater, 2013, 25: 3045–3049

    Article  Google Scholar 

  42. Xiong H, Slater MD, Balasubramanian M, Johnson CS, Rajh T. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J Phys Chem Lett, 2011, 2: 2560–2565

    Article  Google Scholar 

  43. Bernhart W, Kruger FJ. Technology & Market D rivers for Stationary and Automotive Battery Systems. Nice: Roland Berger Strategy Consultants, 2012 http://www.rechargebatteries.org/wp-content/ uploads/2013/04/Batteries-2012-Roland-Berger-Report1.pdf

    Google Scholar 

  44. Uchaker E, Zheng YZ, Li S, et al. Better than crystalline: amorphous vanadium oxide for sodium-ion batteries. J Mater Chem A, 2014, 2: 18208–18214

    Article  Google Scholar 

  45. Wei Q, Liu J, Feng W, et al. Hydrated vanadium pentoxide with superior sodium storage capacity. J Mater Chem A, 2015, 3: 8070–8075

    Article  Google Scholar 

  46. Wang Y, Takahashi K, Lee K, Cao G. Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation. Adv Funct Mater, 2006, 16: 1133–1144

    Article  Google Scholar 

  47. Wang Y, Shang H, Chou T, Cao G. Effects of thermal annealing on the Li+ intercalation properties of V2O5·nH2O xerogel films. J Phys Chem B, 2005, 109: 11361–11366

    Article  Google Scholar 

  48. Nam KW, Kim S, Yang E, et al. Critical role of crystal water for a layered cathode material in sodium ion batteries. Chem Mater, 2015, 27: 3721–3725

    Article  Google Scholar 

  49. Yabuuchi N, Komaba S. Recent research progress on iron- and manganese- based positive electrode materials for rechargeable sodium batteries. Sci Technol Adv Mater, 2014, 15: 043501

    Article  Google Scholar 

  50. Mo Y, Ong SP, Ceder G. Insights into diffusion mechanisms in P2 layered oxide materials by first-principles calculations. Chem Mater, 2014, 26: 5208–5214

    Article  Google Scholar 

  51. Han SC, Lim H, Jeong J, et al. Ca-doped NaxCoO2 for improved cyclability in sodium ion batteries. J Power Sources, 2015, 277: 9–16

    Article  Google Scholar 

  52. Roger M, Morris DJP, Tennant DA, et al. Patterning of sodium ions and the control of electrons in sodium cobaltate. Nature, 2007, 445: 631–634

    Article  Google Scholar 

  53. Zandbergen HW, Foo M, Xu Q, Kumar V, Cava RJ. Sodium ion ordering in NaxCoO2: electron diffraction study. Phys Rev B, 2004, 70: 1–8

    Article  Google Scholar 

  54. Lei Y, Li X, Liu L, Ceder G. Synthesis and stoichiometry of different layered sodium cobalt oxides. Chem mater, 2014, 26: 5288–5296

    Article  Google Scholar 

  55. Shibata T, Fukuzumi Y, Kobayashi W, Moritomo Y. Fast discharge process of layered cobalt oxides due to high Na+ diffusion. Sci Rep, 2015, 5: 9006

    Article  Google Scholar 

  56. Hasa I, Buchholz D, Passerini S, Hassoun J. A comparative study of layered transition metal oxide cathodes for application in sodium- ion battery. ACS Appl Mater Interfaces, 2015, 7: 5206–5212

    Article  Google Scholar 

  57. Noh HJ, Youn S, Yoon CS, Sun YK. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources, 2013, 233: 121–130

    Article  Google Scholar 

  58. Saadoune I, Delmas C. On the LixNi0.8Co0.2O2 System. J Solid State Chem, 1998, 136: 8–15

    Article  Google Scholar 

  59. Hwang JY, Oh SM, Myung ST, et al. Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nat Commun, 2015, 6: 6865

    Article  Google Scholar 

  60. Shu GJ, Chou FC. Sodium-ion diffusion and ordering in singlecrystal P2-NaxCoO2. Phys Rev B, 2008, 78: 3–6

    Article  Google Scholar 

  61. Medarde M, Mena M, Gavilano JL, et al. 1D to 2D Na+ ion diffusion inherently linked to structural transitions in Na0.7CoO2. Phys Rev Lett, 2013, 110: 1–5

    Article  Google Scholar 

  62. Wang Y, Xiao R, Hu YS, Avdeev M, Chen L. P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nat Commun, 2015, 6: 6954

    Article  Google Scholar 

  63. Casas-Cabanas M, Roddatis V, Saurel D, et al. Crystal chemistry of Na insertion/deinsertion in FePO4-NaFePO4. J Mater Chem, 2012, 22: 17421–17423

    Article  Google Scholar 

  64. Oh SM, Myung ST, Hassoun J, Scrosati B, Sun YK. Reversible NaFe-PO4 electrode for sodium secondary batteries. Electrochem Commun, 2012, 222: 149–152

    Article  Google Scholar 

  65. Kim J, Seo DH, Kim H, et al. Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries. Energy Environ Sci, 2015, 8: 540–545

    Article  Google Scholar 

  66. Lee YJ, Yi H, Kim WJ, et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes, Science, 2009, 324: 1051–1055

    Google Scholar 

  67. Kim SW, Ryu J, Park CB, Kang K. Carbon nanotube-amorphous FePO4 core-shell nanowires as cathode material for Li ion batteries. Chem Commun, 2010, 46: 7409–7411

    Article  Google Scholar 

  68. Ha KH, Woo SH, Mok D, et al. Na4-aM2+α/2(P2O7)2 (2/3 ≤ α ≤ 7/8, M = Fe, Fe0.5Mn0.5, Mn): a promising sodium ion cathode for Na-ion batteries. Adv Energy Mater, 2013, 3: 770–776

    Article  Google Scholar 

  69. Kundu D, Tripathi R, Popov G, Makahnouk WRM, Nazar LF. Synthesis, structure, and Na-ion migration in Na4NiP2O7F2: a prospective high voltage positive electrode material for the Na-ion batter. Chem Mater, 2015, 27: 885–891

    Article  Google Scholar 

  70. Barpanda P, Oyama G, Nishimura SI, Chung SC, Yamada A. A 3.8-V earth-abundant sodium battery electrode. Nat Commun, 2014, 5: 4358

    Article  Google Scholar 

  71. Saha P, Jampani PH, Datta MK, et al. Electrochemical performance of chemically and solid state-derived Chevrel phase Mo6T8(T = S, Se) positive electrodes for sodium-ion batteries. J Phys Chem C, 2015, 119: 5771–5782

    Article  Google Scholar 

  72. Cao Y, Xiao L, Sushko ML, et al. Sodiumion insertion in hollow carbon nanowires for battery applications. Nano Lett, 2012, 12: 3783–3787

    Article  Google Scholar 

  73. Stevens DA, Dahn JR. The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc, 2001, 148: A803–A811

    Article  Google Scholar 

  74. Datta D, Li J, Shenoy VB. Defective graphene as promising anode material for Na-ion battery and Ca-ion batteries. ACS Appl Mater Interfaces, 2014, 6: 1788–1795

    Article  Google Scholar 

  75. Zhou LJ, Hou ZF, Wu LM, Zhang YF. First-principles studies of lithium adsorption and diffusion on graphene with grain boundaries. J Phys Chem C, 2014, 118: 28055–28062

    Article  Google Scholar 

  76. Datta D, Li J, Koratkar N, Shenoy VB. Enhanced lithiation in defective graphene. Carbon, 2014, 80: 305–310

    Article  Google Scholar 

  77. Pramudita JC, Pontiroli D, Magnani G, et al. Graphene and selected derivatives as negative electrodes in sodium- and lithium-ion batteries. Chem Electro Chem, 2015, 2: 600–610

    Google Scholar 

  78. Wen Y, He K, Zhu Y, et al. Expanded graphite as superior anode for sodium-ion batteries. Nat Commun, 2014, 5: 4033

    Google Scholar 

  79. Tsai P, Chung SC, Lin S, Yamada A. Ab initio study of sodium intercalation into disordered carbon. J Mater Chem A, 2015, 3: 9763–9768

    Article  Google Scholar 

  80. Malyi OI, Sopiha K, Kulish VV, et al. A computational study of Na behavior on graphene. Appl Surf Sci, 2015, 333: 235–243

    Article  Google Scholar 

  81. Xu J, Wang M, Wickramaratne NP, et al. High-performance sodium ion batteries based on three-dimensional anode from nitrogen- doped graphene foams. Adv Mater, 2015, 27: 2042–2048

    Article  Google Scholar 

  82. Kim KT, Ali G, Chung KY, et al. Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett, 2014, 14: 416–422

    Article  Google Scholar 

  83. Wu L, Bresser D, Buchholz D, et al. Unfolding the mechani sm of sodium insertion in anatase TiO2 nanoparticles. Adv Energy Mater, 2015, doi: 10.1002/aenm.201401142

    Google Scholar 

  84. Cha HA, Jeong HM, Kang JK. Nitrogen-doped open pore channeled graphene facilitating electrochemical performance of TiO2 nanoparticles as an anode material for sodium ion batteries. J Mater Chem A, 2014, 2: 5182–5186

    Article  Google Scholar 

  85. Gonzalez JR, Alcantara R, Nacimiento F, Ortiz GF, Tirado JL. Microstructure of the epitaxial film of anatase nanotubes obtained at high voltage and the mechanism of its electrochemical reaction with sodium. CrystEngComm, 2014, 16: 4602–4609

    Article  Google Scholar 

  86. Legrain F, Malyi O, Manzhos S. Insertion energetics of lithium, sodium, and magnesium in crystalline and amorphous titanium dioxide: a comparative first-principles study. J Power Sources, 2015, 278: 197–202

    Article  Google Scholar 

  87. Usui H, Yoshioka S, Wasada K, Shimizu M, Sakaguchi H. Nb-doped rutile TiO2: a potential anode material for Na-ion battery. ACS Appl Mater Interfaces, 2015, 7: 6567–6573

    Article  Google Scholar 

  88. Darwiche A, Toiron M, Sougrati MT, et al. Performance and mechanism of FeSb2 as negative electrode for Na-ion batteries. J Power Sources, 2015, 280: 588–592

    Article  Google Scholar 

  89. Wu D, Li X, Xu B, et al. NaTiO2: a layered anode material for sodium- ion batteries. Energy Environ Sci, 2015, 8: 195–202

    Article  Google Scholar 

  90. Chen C, Wen Y, Hu X, et al. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat Commun, 2015, 6: 6929

    Article  Google Scholar 

  91. Sun Y, Zhao L, Pan H, et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat Commun, 2013, 4: 1870

    Article  Google Scholar 

  92. Wang Y, Yu X, Xu S, et al. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat Commun, 2013, 4: 2365

    Google Scholar 

  93. Wang Y, Liu J, Lee B, et al. Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nat Commun, 2015, 6: 6401

    Article  Google Scholar 

  94. Qian J, Wu X, Cao Y, Ai X, Yang H. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew Chem Int Ed, 2013, 52: 4633–4636

    Article  Google Scholar 

  95. Hembram KPSS, Jung H, Yeo BC, et al. Unraveling the atomistic sodiation mechanism of black phosphorus for sodium ion batteries by first-principles calculations. J Phys Chem C, 2015, 119: 15041–15046

    Article  Google Scholar 

  96. Wang C, Xu Y, Fang Y, et al. Extended p-conjugated system for fastcharge and-discharge sodium-ion batteries. J Am Chem Soc, 2015, 137: 3124–3130

    Article  Google Scholar 

  97. Gregory TD, Hoffman RJ, Winterton RC. Nonaqueous electrochemistry of magnesium. J Electrochem Soc, 1990, 137: 775–780

    Article  Google Scholar 

  98. Aurbach D, Lu Z, Schechter A, et al. Prototype systems for rechargeable magnesium batteries. Nature, 2000, 407: 724–727

    Article  Google Scholar 

  99. Novák P, Imhof R, Haas O. Magnesium insertion electrodes for rechargeable nonaqueous batteries—a competitive alternative to lithium? Electrochim Acta, 1999, 45: 351–367

    Article  Google Scholar 

  100. Aurbach D, Weissman I, Gofer Y, Levi E. Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chem Rec, 2003, 3: 61–73

    Article  Google Scholar 

  101. Yuan H, Jiao L, Cao J, et al. Development of magnesium-insertion positive electrode for rechargeable magnesium batteries. J Mater Sci Technol, 2004, 20: 41–45

    Google Scholar 

  102. Levi E, Levi MD, Chasid O, Aurbach D. A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries. J Electroceramics, 2009, 22: 13–19

    Article  Google Scholar 

  103. Levi E, Gofer Y, Aurbach D. On the way to rechargeable Mg batteries: the challenge of new cathode materials. Chem Mater, 2010, 22: 860–868

    Article  Google Scholar 

  104. Muldoon J, Bucur CB, Oliver AG, et al. Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ Sci, 2012, 5: 5941–5950

    Article  Google Scholar 

  105. Yoo HD, Shterenberg I, Gofer Y, et al. Mg rechargeable batte ries: an on-going challenge. Energy Environ Sci, 2013, 6: 2265–2279

    Article  Google Scholar 

  106. Saha P, Datta MK, Velikokhatnyi OI, et al. Rechargeable magnesium battery: current status and key challenges for the future. Prog Mater Sci, 2014, 66: 1–86

    Article  Google Scholar 

  107. Tutusaus O, Mohtadi R. Paving the way towards highly stable and practical electrolytes for rechargeable magnesium batteries. ChemElectroChem, 2015, 2: 51–57

    Article  Google Scholar 

  108. Park MS, Kim JG, Kim YJ, Choi NS, Kim JS. Recent advances in rechargeable magnesium battery technology: a review of the field’s current status and prospects. Isr J Chem, 2015, 55: 570–585

    Article  Google Scholar 

  109. Lu Z, Schechter A, Moshkovich M, Aurbach D. On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J Electroanal Chem, 1999, 466: 203–217

    Article  Google Scholar 

  110. Muldoon J, Bucur CB, Oliver AG, et al. Corrosion of magnesium electrolytes: chlorides–the culprit. Energy Environ Sci, 2013, 6: 482–487

    Article  Google Scholar 

  111. Lv D, Xu T, Saha P, et al. A scientific study of current collectors for Mg batteries in Mg(AlCl2EtBu)2/THF electrolyte. J Electrochem Soc, 2012, 160: A351–A355

    Article  Google Scholar 

  112. Nelson EG, Brody SI, Kampf JW, Bartlett BM. A magnesium tetraphenylaluminate battery electrolyte exhibits a wide electrochemical potential window and reduces stainless steel corrosion. J Mater Chem A, 2014, 2: 18194–18198

    Article  Google Scholar 

  113. Tutusaus O, Mohtadi R, Arthur TS, et al. An efficient halogen-free electrolyte for use in rechargeable magnesium batteries. Angew Chem Int Ed, 2015, 54: 7900–7904

    Article  Google Scholar 

  114. Guo Y, Zhang F, Yang J, et al. Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries. Energy Environ Sci, 2012, 5: 9100–9106

    Article  Google Scholar 

  115. Amatucci GG, Badway F, Singhal A, et al. Investigation of yttrium and polyvalent ion intercalation into nanocrystalline vanadium oxide. J Electrochem Soc, 2001, 148: A940–A950

    Article  Google Scholar 

  116. Novák P. Electrochemical insertion of magnesium in metal oxides and sulfides from aprotic electrolytes. J Electrochem Soc, 1993, 140: 140–144

    Article  Google Scholar 

  117. Levi E, Gershinsky G, Aurbach D, Isnard O, Ceder G. New insight on the unusually high ionic mobility in Chevrel phases. Chem Mater, 2009, 21: 1390–1399

    Article  Google Scholar 

  118. Aurbach D, Gofer Y, Lu Z, et al. A short review on the comparison between Li battery systems and rechargeable magnesium battery technology. J Power Sources, 2001, 97-98: 28–32

    Article  Google Scholar 

  119. Kapustinskii AF. Lattice energy of ionic crystals. Q Rev Chem Soc, 1956, 10: 283–294

    Article  Google Scholar 

  120. Levi MD, Lancry E, Gizbar H, et al. Kinetic and thermodynamic studies of Mg2+ and Li+ ion insertion into the Mo6S8 Chevrel phase. J Electrochem Soc, 2004, 151: A1044–A1051

    Article  Google Scholar 

  121. Tao ZL, Xu LN, Gou XL, Chen J, Yuan HT. TiS2 nanotubes as the cathode materials of Mg-ion batteries. Chem Commun, 2004: 2080–2081

    Google Scholar 

  122. Ling C, Banerjee D, Song W, Zhang M, Matsui M. First-principles study of the magnesiation of olivines: redox reaction mechanism, electrochemical and thermodynamic properties. J Mater Chem, 2012, 22: 13517–13523

    Article  Google Scholar 

  123. Liu M, Rong Z, Malik R, et al. Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations. Energy Environ Sci, 2014, 8: 964–974

    Article  Google Scholar 

  124. Aurbach D, Cohen Y, Moshkovich M. The study of reversible magnesium deposition by in situ scanning tunneling microscopy. Electrochem Solid State Lett, 2001, 4: A113–A116

    Article  Google Scholar 

  125. Matsui M. Study on electrochemically deposited Mg metal. J Power Sources, 2011, 196: 7048–7055

    Article  Google Scholar 

  126. Ling C, Banerjee D, Matsui M. Study of the electrochemical deposition of Mg in the atomic level: why it prefers the non-dendritic morphology. Electrochim Acta, 2012, 76: 270–274

    Article  Google Scholar 

  127. Levi E, Gofer Y, Vestfreed Y, Lancry E, Aurbach D. Cu2Mo6S8 Chevrel phase, a promising cathode material for new rechargeable Mg batteries: a mechanically induced chemical reaction. Chem Mater, 2002, 14: 2767–2773

    Article  Google Scholar 

  128. Besenhard JO, Winter M. Advances in battery technology: rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries. ChemPhysChem, 2002, 3: 155–159

    Article  Google Scholar 

  129. Kganyago KR, Ngoepe PE, Catlow CRA. Voltage profile, structural prediction, and electronic calculations for MgxMo6S8. Phys Rev B, 2003, 67: 1–10

    Article  Google Scholar 

  130. Levi MD, Gizbar H, Lancry E, et al. A comparative study of Mg2+ and Li+ ion insertions into the Mo6S8 Chevrel phase using electrochemical impedance spectroscopy. J Electroanal Chem, 2004, 569: 211–223

    Article  Google Scholar 

  131. Lancry E, Levi E, Gofer Y, et al. Leaching chemistry and the performance of the Mo6S8 cathodes in rechargeable Mg batteries. Chem Mater, 2004, 16: 2832–2838

    Article  Google Scholar 

  132. Lancry E, Levi E, Gofer Y, Levi MD, Aurbach D. The effect of milling on the performance of a Mo6S8 Chevrel phase as a cathode material for rechargeable Mg batteries. J Solid State Electrochem, 2005, 9: 259–266

    Article  Google Scholar 

  133. Levi MD, Aurbach D. A comparison between intercalation of Li and Mg ions into the model Chevrel phase compound (MxMo6S8): impedance spectroscopic studies. J Power Sources, 2005, 146: 349–354

    Article  Google Scholar 

  134. Levi MD, Lancri E, Levi E, et al. The effect of the anionic framework of Mo6X8 Chevrel Phase (X = S, Se) on the thermodynamics and the kinetics of the electrochemical insertion of Mg2+ ions. Solid State Ionics, 2005, 176: 1695–1699

    Article  Google Scholar 

  135. Levi E, Lancry E, Gofer Y, Aurbach D. The crystal structure of the inorganic surface films formed on Mg and Li intercalation compounds and the electrode performance. J Solid State Electrochem, 2006, 10: 176–184

    Article  Google Scholar 

  136. Lancry E, Levi E, Mitelman A, Malovany S, Aurbach D. Molten salt synthesis (MSS) of Cu2Mo6S8—new way for large-scale production of Chevrel phases. J Solid State Chem, 2006, 179: 1879–1882

    Article  Google Scholar 

  137. Levi E, Lancry E, Mitelman A, et al. Phase diagram of Mg insertion into Chevrel phases, MgxMo6T8 (T = S, Se). 2. The crystal structure of triclinic MgMo6Se8. Chem Mater, 2006, 18: 3705–3714

    Article  Google Scholar 

  138. Levi E, Lancry E, Mitelman A, et al. Phase diagram of Mg insertion into Chevrel phases, MgxMo6T8 (T = S, Se). 1. Crystal structure of the sulfides. Chem Mater, 2006, 18: 5492–5503

    Article  Google Scholar 

  139. Levi E, Mitelman A, Aurbach D, Isnard O. On the mechanism of triclinic distortion in Chevrel phase as probed by in-situ neutron diffraction. Inorg Chem, 2007, 46: 7528–7535

    Article  Google Scholar 

  140. Mitelman A, Levi E, Lancry E, Aurbach D. On the Mg trapping mechanism in electrodes comprising Chevrel phases. ECS Trans, 2007, 3: 109–115

    Article  Google Scholar 

  141. Mitelman A, Levi MD, Lancry E, Levi E, Aurbach D. New cathode materials for rechargeable Mg batteries: fast Mg ion transport and reversible copper extrusion in CuyMo6S8 compounds. Chem Commun, 2007: 4212–4214

    Google Scholar 

  142. Levi E, Mitelman A, Aurbach D, Brunelli M. Structural mechanism of the phase transitions in the Mg-Cu-Mo6S8 system probed by ex situ synchrotron X-ray diffraction. Chem Mater, 2007, 19: 5131–5142

    Article  Google Scholar 

  143. Aurbach D, Suresh GS, Levi E, et al. Progress in rechargea ble mag nesium battery technology. Adv Mater, 2007, 19: 4260–4267

    Article  Google Scholar 

  144. Suresh GS, Levi MD, Aurbach D, Effect of chalcogen substitution in mixed Mo6S8-n Sen (n = 0, 1, 2) Chevrel phases on the thermodynamics and kinetics of reversible Mg ions insertion. Electrochim Acta, 2008, 53: 3889–3896

    Article  Google Scholar 

  145. Levi E, Mitelman A, Isnard O, Brunelli M, Aurbach D. Phase diagram of Mg insertion into Chevrel phases, MgxMo6T8 (T = S, Se). 3. The crystal structure of triclinic Mg2Mo6Se8. Inorg Chem, 2008, 47: 1975–1983

    Article  Google Scholar 

  146. Woan KV, Scheffler RH, Bell NS, Sigmund WM. Electrospinning of nanofiber Chevrel phase materials. J Mater Chem, 2011, 21: 8537–8539

    Article  Google Scholar 

  147. Gershinsky G, Haik O, Salitra G, et al. Ultra fast elemental synthesis of high yield copper Chevrel phase with high electrochemical performance. J Solid State Chem, 2012, 188: 50–58

    Article  Google Scholar 

  148. Ryu A, Park M, Cho W, Kim JS, Kim Y. Size-controlled Chevrel Mo6S8 as cathode material for Mg rechargeable battery. Bull Korean Chem Soc, 2013, 34: 3033–3038

    Article  Google Scholar 

  149. Ichitsubo T, Yagi S, Nakamura R, et al. A new aspect of Chevrel compounds as a positive electrode for magnesium battery. J Mater Chem A, 2014, 2: 14858–14866

    Article  Google Scholar 

  150. Saha P, Jampani PH, Datta MK, et al. A convenient approach to Mo6S8 Chevrel phase cathode for rechargeable magnesium battery. J Electrochem Soc, 2014, 161: A593–A598

    Article  Google Scholar 

  151. Taniguchi K, Yoshino T, Gu Y, Katsura Y, Takagi H. Reversible electrochemical insertion/extraction of Mg and Li Ions for orthorhombic Mo9Se11 with cluster structure. J Electrochem Soc, 2014, 162: 198–202

    Article  Google Scholar 

  152. Kaewmaraya T, Ramzan M, Osorio-Guillén JM, Ahuja R. Electronic structure and ionic diffusion of green battery cathode material: Mg2Mo6S8. Solid State Ionics, 2014, 261: 17–20

    Article  Google Scholar 

  153. Woo SG, Yoo JY, Cho W, et al. Copper incorporated CuxMo6S8 (x = 1) Chevrel-phase cathode materials synthesized by chemical intercalation process for rechargeable magnesium batteries. RSC Adv, 2014, 4: 59048–59055

    Article  Google Scholar 

  154. Cho W, Moon B, Woo SG, et al. Size effect of Chevrel MgxMo6S8 as cathode material for magnesium rechargeable batteries. Bull Korean Chem Soc, 2015, 36: 1209–1214

    Article  Google Scholar 

  155. Choi SH, Kim JS, Woo SG, et al. Role of Cu in Mo6S8 and Cu mixture cathodes for magnesium ion batteries. ACS Appl Mater Interfaces, 2015, 7: 7016–7024

    Article  Google Scholar 

  156. Doe RE, Han R, Hwang J, et al. Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem Commun, 2014, 50: 243–245

    Article  Google Scholar 

  157. Shao Y, Liu T, Li G, et al. Coordination chemistry in magnesium battery electrolytes: how ligands affect their performance. Sci Rep, 2013, 3: 3130

    Google Scholar 

  158. Mohtadi R, Matsui M, Arthur TS, Hwang SJ. Magnesium borohydride: from hydrogen storage to magnesium battery. Angew Chem Int Ed, 2012, 51: 9780–9783

    Article  Google Scholar 

  159. Zhu J, Guo Y, Yang J, et al. Halogen-free boron based electrolyte solution for rechargeable magnesium batteries. J Power Sources, 2014, 248: 690–694

    Article  Google Scholar 

  160. Amir N, Vestfrid Y, Chusid O, Gofer Y, Aurbach D. Progress in nonaqueous magnesium electrochemistry. J Power Sources, 2007, 174: 1234–1240

    Article  Google Scholar 

  161. Liang Y, Feng R, Yang S, et al. Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode. Adv Mater, 2011, 23: 640–643

    Article  Google Scholar 

  162. Li XL, Li YD. MoS2 nanostructures: synthesis and electrochemical Mg2+ intercalation. J Phys Chem B, 2004, 108: 13893–13900

    Article  Google Scholar 

  163. Liu Y, Jiao L, Wu Q, et al. Sandwich-structured graphene-like MoS2/C microspheres for rechargeable Mg batteries. J Mater Chem A, 2013, 1: 5822–5826

    Article  Google Scholar 

  164. Liu Y, Jiao L, Wu Q, et al. Synthesis of rGO-supported layered MoS2 for high-performance rechargeable Mg batteries. Nanoscale, 2013, 5: 9562–9567

    Article  Google Scholar 

  165. Yang S, Li D, Zhang T, Tao Z, Chen J. First-principles study of zigzag MoS2 nanoribbon as a promising cathode material for rechargeable Mg batteries. J Phys Chem C, 2012, 116: 1307–1312

    Article  Google Scholar 

  166. Liang Y, Yoo HD, Li Y, et al. Interlayer-expanded m olybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett, 2015, 15: 2194–2202

    Article  Google Scholar 

  167. Hu Z, Wang L, Zhang K, et al. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew Chem Int Ed, 2014, 53: 12794–12798

    Article  Google Scholar 

  168. Pereira AO, Miranda CR. First-principles inve stigation of transition metal dichalcogenide nanotubes for Li and Mg ion battery applications. J Phys Chem C, 2015, 119: 4302–4311

    Article  Google Scholar 

  169. Bruce PG, Krok F, Nowinski J, Gibson VC, Tavakkoli K. Chemical intercalation of magnesium into solid hosts. J Mater Chem, 1991, 1: 705–706

    Article  Google Scholar 

  170. Bruce PG, Krok F, Lightfoot P, Nowinski JL, Gibson VC. Multivalent cation intercalation. Solid State Ionics, 1992, 53-56: 351–355

    Article  Google Scholar 

  171. Emly A, Van der Ven A. Mg intercalation in l ayered and spinel host crystal structures for Mg batteries. Inorg Chem, 2015, 54: 4394–4402

    Article  Google Scholar 

  172. Gu Y, Katsura Y, Yoshino T, Takagi H, Taniguchi K. Rechargeable magnesium-ion battery based on a TiSe2-cathode with d-p orbital hybridized electronic structure. Sci Rep, 2015, 5: 12486

    Article  Google Scholar 

  173. Liu B, Luo T, Mu G, et al. Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes, ACS Nano, 2013, 7: 8051–8058

    Article  Google Scholar 

  174. Tarascon JM, Wang E, Shokoohi FK, McKinnon WR, Colson S. The spinel phase of LiMn2O4 as a cathode in secondary lithium cells. J Electrochem Soc, 1991, 138: 2859–2864

    Article  Google Scholar 

  175. Yuan W, Gunter JR. Insertion of bivalent cations into monoclinic NbS3 prepared under high pressure and their secondary batteries. Solid State Ionics, 1995, 76: 253–258

    Article  Google Scholar 

  176. He D, Wu D, Gao J, et al. Flower-like CoS with nanostructures as a new cathode-active material for rechargeable magnesium batteries. J Power Sources, 2015, 294: 643–649

    Article  Google Scholar 

  177. Yu W, Wang D, Zhu B, Zhou G. Intercalation of Mg in V2O5. Solid State Commun, 1987, 63: 1043–1044

    Article  Google Scholar 

  178. Yu W, Wang D, Zhu B, Wang S, Xue L. Insertion of bi-valence cations Mg2+ and Zn2+ into V2O5. Solid State Commun, 1987, 61: 271–273

    Article  Google Scholar 

  179. Pereira-Ramos JP, Messina R, Perichon J. Electrochemical formation of a magnesium vanadium bronze MgxV2O5 in sulfone-based electrolytes at 150°C. J Electroanal Chem Interfacial Electrochem, 1987, 218: 241–249

    Article  Google Scholar 

  180. Novák P, Scheifele W, Joho F, Haas O. Electrochemical insertion of magnesium into hydrated vanadium bronzes. J Electrochem Soc, 1995, 142: 2544–2550

    Article  Google Scholar 

  181. Novák P, Scheifele W, Haas O. Magnesium insertion batteries—an alternative to lithium? J Power Sources, 1995, 54: 479–482

    Article  Google Scholar 

  182. Shklover V, Haibach T, Ried F, Nesper R, Novák P. Crystal structure of the product of Mg2+ insertion into V2O5 single crystals. J Solid State Chem, 1996, 123: 317–323

    Article  Google Scholar 

  183. Le DB, Passerini S, Coustier F, et al. Intercalation of polyvalent cations into V2O5 aerogels. Chem Mater, 1998, 4756: 682–684

    Article  Google Scholar 

  184. Morita M, Yoshimoto N, Yakushiji S, Ishikawa M. Rechargeable magnesiu m batteries using a novel polymeric solid electrolyte. Electrochem Solid State Lett, 2001, 4: A177–A179

    Article  Google Scholar 

  185. Imamura D, Miyayama M, Hibino M, Kudo T. Mg intercalation prop erties into V2O5 gel/carbon composites under high-rate condition. J Electrochem Soc, 2003, 150: A753–A758

    Article  Google Scholar 

  186. Imamura D, Masaru M. Characterization of magnesium-intercalated V2O5/carbon composites. Solid State Ionics, 2003, 161: 173–180

    Article  Google Scholar 

  187. Yoshimoto N, Yakushiji S, Ishikawa M, Morita M. Rechargeable magnesium batteries with polymeric gel electrolytes containing magnesium salts. Electrochim Acta, 2003, 48: 2317–2322

    Article  Google Scholar 

  188. Yu L, Zhang X. Electrochemical insertion of magnesium ions into V2O5 from aprotic electrolytes with varied water content. J Colloid Interface Sci, 2004, 278: 160–165

    Article  Google Scholar 

  189. Tang PE, Sakamoto JS, Baudrin E, Dunn B. V2O5 aerogel as a versatile host for metal ions. J Non Cryst Solids, 2004, 350: 67–72

    Article  Google Scholar 

  190. Oh JS, Ko JM, Kim DW. Preparation and characterization of gel polymer electrolytes for solid state magnesium batteries. Electrochim Acta, 2004, 50: 903–906

    Article  Google Scholar 

  191. Bervas M, Klein LC, Amatucci GG. Vanadium oxide–propylene carbonate composite as a host for the intercalation of polyvalent cations. Solid State Ionics, 2005, 176: 2735–2747

    Article  Google Scholar 

  192. Jiao L, Yuan H, Wang Y, Cao J, Wang Y. Mg intercalation properties into open-ended vanadium oxide nanotubes. Electrochem Commun, 2005, 7: 431–436

    Article  Google Scholar 

  193. Jiao L, Yuan H, Si Y, et al. Electrochemical insertion of magnesium in open-ended vanadium oxide nanotubes. J Power Sources, 2006, 156: 673–676

    Article  Google Scholar 

  194. Jiao LF, Yuan HT, Si YC, Wang YJ, Wang YM. Synthesis of Cu0.1- doped vanadium oxide nanotubes and their application as cathode materials for rechargeable magnesium batteries. Electrochem Commun, 2006, 8: 1041–1044

    Article  Google Scholar 

  195. Hu T, Lin JB, Kong F, Mao JG. Mg7V4O16(OH)2(H2O): a magnesium vanadate with a novel 3D magnesium oxide open framework. Inorg Chem Commun, 2008, 11: 1012–1014

    Article  Google Scholar 

  196. Stojkovic I, Cvjeticanin N, Markovic S, Mitric M, Mentus S. Electrochemical behav iour of V2O5 xerogel and V2O5 xerogel/C composite in an aqueous LiNO3 and Mg(NO3)2 solutions. Acta Phys Polonica A, 2010, 117: 837–840

    Google Scholar 

  197. Pandey GP, Agrawal RC, Hashmi SA. Performance studies on composite gel polymer electrolytes for rechargeable magnesium battery application. J Phys Chem Solids, 2011, 72: 1408–1413

    Article  Google Scholar 

  198. Sun JZ. Study of MgV2O6 as cathode material for secondary magnesium batteries. Asian J Chem, 2011, 23: 1399–1400

    Google Scholar 

  199. Wang Z, Su Q, Deng H. Single-layered V2O5 a promising cathode material for rechargeable Li and Mg ion batteries: an ab initio study. Phys Chem Chem Phys, 2013, 15: 8705–8709

    Article  Google Scholar 

  200. Inamoto M, Kurihara H, Yajima T. Vanadium pentoxide-based composite synthesized using microwave water plasma for cathode material in rechargeable magnesium batteries. Materials, 2013, 6: 4514–4522

    Article  Google Scholar 

  201. Gershinsky G, Yoo HD, Gofer Y, Aurbach D. Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir, 2013, 29: 10964–10972

    Article  Google Scholar 

  202. Kim RH, Kim JS, Kim HJ, et al. Highly reduced VOx nanotube cathode materials with ultra-high capacity for magnesium ion batteries. J Mater Chem A, 2014, 2: 20636–20641

    Article  Google Scholar 

  203. Carrasco J. Role of van der Waals forces in thermodynamics and kinetics of layered transition metal oxide electrodes: alkali and alkaline-earth ion insertion into V2O5. J Phys Chem C, 2014, 118: 19599–19607

    Article  Google Scholar 

  204. Lee SH, DiLeo RA, Marschilok AC, Takeuchi KJ, Takeuchi ES. Sol gel based synthesis and electrochemistry of magnesium vanadium oxide: a promising cathode material for secondary magnesium ion batteries. ECS Electrochem Lett, 2014, 3: A87–A90

    Article  Google Scholar 

  205. Zhou B, Shi H, Cao R, Zhang X, Jiang Z. Theoretical study on the initial stage of magnesium battery based on V2O5 cathode. Phys Chem Chem Phys, 2014, 16: 18578–18585

    Article  Google Scholar 

  206. Wang H, Senguttuvan P, Proffit DL, et al. Formation of MgO during chemical magnesiation of Mg-ion battery materials. ECS Electrochem Lett, 2015, 4: A90–A93

    Article  Google Scholar 

  207. Sai Gautam G, Canepa P, Abdellahi A, et al. The intercalation phase diagram of Mg in V2O5 from first principles. Chem Mater, 2015, 27: 3733–3742

    Article  Google Scholar 

  208. Okoshi M, Yamada Y, Yamada A, Nakai H. Theoretical analysis on de-solvation of lithium, sodium, and magnesium cations to organic electrolyte solvents. J Electrochem Soc, 2013, 160: A2160–A2165

    Article  Google Scholar 

  209. Le DB, Passerini S, Guo J, et al. High surface area V2O5 aerogel intercalation electrodes. J Electrochem Soc, 1996, 143: 2099–2104

    Article  Google Scholar 

  210. Malik R, Zhou F, Ceder G. Kinetics of non-equilibrium lithium incorporation in LiFePO4. Nat Mater, 2011, 10: 587–590

    Article  Google Scholar 

  211. Kim C, Phillips PJ, Key B, et al. Direct observation of reversible magnesium ion intercalation into a spinel oxide host. Adv Mater, 2015, 27: 3377–3384

    Article  Google Scholar 

  212. Sánchez L, Pereira-Ramos JP. Electrochemical insertion of magnesium in a mixed manganese-cobalt oxide. J Mater Chem, 1997, 7: 471–473

    Article  Google Scholar 

  213. Kumar GG, Munichandraiah N. Solid-state Mg/MnO2 cell employing a gel polymer electrolyte of magnesium triflate. J Power Sources, 2000, 91: 157–160

    Article  Google Scholar 

  214. Kumagai N, Komaba S, Sakai H, Kumagai N. Preparation of todorokite-type manganese-based oxide and its application as lithium and magnesium rechargeable battery cathode. J Power Sources, 2001, 97-98: 515–517

    Article  Google Scholar 

  215. Kumar GG, Munichandraiah N. Solid-state rechargeable magnesium cell with poly(vinylidenefluoride)-magnesium triflate gel polymer electrolyte. J Power Sources, 2001, 102: 46–54

    Article  Google Scholar 

  216. Kumar G, Munichandraiah N. Poly(methylmethacrylate)-magnesium triflate gel polymer electrolyte for solid state magnesium battery application. Electrochim Acta, 2002, 47: 1013–1022

    Article  Google Scholar 

  217. Kurihara H, Yajima T, Suzuki S. Preparation of cathode active material for rechargeable magnesium battery by atmospheric pressure microwave discharge using carbon felt pieces. Chem Lett, 2008, 37: 376–377

    Article  Google Scholar 

  218. Sheha E, El-Mansy MK. A high voltage magnesium battery based on H2SO4-doped (PVA)0.7(NaBr)0.3 solid polymer electrolyte. J Power Sources, 2008, 185: 1509–1513

    Article  Google Scholar 

  219. Sheha E. Ionic conductivity and dielectric properties of plasticized PVA0.7(LiBr)0.3(H2SO4)2.7M solid acid membrane and its performance in a magnesium battery. Solid State Ionics, 2009, 180: 1575–1579

    Article  Google Scholar 

  220. Rasul S, Suzuki S, Yamaguchi S, Miyayama M. High capacity positive electrodes for secondary Mg-ion batteries. Electrochim Acta, 2012, 82: 243–249

    Article  Google Scholar 

  221. Zhang R, Yu X, Nam KW, et al. a-MnO2 as a cathode material for rechargeable Mg batteries. Electrochem Commun, 2012, 23: 110–113

    Article  Google Scholar 

  222. Rasul S, Suzuki S, Yamaguchi S, Miyayama M. Synthesis and electrochemical behavior of hollandite MnO2/acetylene black composite cathode for secondary Mg-ion batteries. Solid State Ionics, 2012, 225: 542–546

    Article  Google Scholar 

  223. Ling C, Mizuno F. Phase stability of post-spinel compound AMn2O4 (A = Li, Na, or Mg) and its application as a rechargeable battery cathode. Chem Mater, 2013, 25: 3062–3071

    Article  Google Scholar 

  224. Rasul S, Suzuki S, Yamaguchi S, Miyayama M. Manganese oxide octahedral molecular sieves as insertion electrodes for rechargeable Mg batteries. Electrochim Acta, 2013, 110: 247–252

    Article  Google Scholar 

  225. Yuan C, Zhang Y, Pan Y, et al. Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery. Electrochim Acta, 2014, 116: 404–412

    Article  Google Scholar 

  226. Kim JS, Chang WS, Kim RH, et al. High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries. J Power Sources, 2014, 273: 210–215

    Article  Google Scholar 

  227. Arthur TS, Zhang R, Ling C, et al. Understanding the electrochemical mechanism of K-aMnO2 for magnesium battery cathodes. ACS Appl Mater Interfaces, 2014, 6: 7004–7008

    Article  Google Scholar 

  228. Mizuno F, Singh N, Arthur TS, et al. Understanding and overcoming the challenges posed by electrode/electrolyte interfaces in rechargeable magnesium batteries. Front Energy Res, 2014, 2: 1–11

    Article  Google Scholar 

  229. Nam KW, Kim S, Lee S, et al. The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett, 2015, 15: 4071–4079

    Article  Google Scholar 

  230. Okamoto S, Ichitsubo T, Kawaguchi T, et al. Intercalation and pus hout process with spinel-to-rocksalt transition on Mg insertion into spinel oxides in magnesium batteries. Adv Sci, 2015, doi: 10.1002/advs.201500072

    Google Scholar 

  231. Zhang R, Arthur TS, Ling C, Mizuno F. Manganese dioxides as rechargeable magnesium battery cathode; synthetic approach to understand magnesiation process. J Power Sources, 2015, 282: 630–638

    Article  Google Scholar 

  232. Song J, Noked M, Gillette E, et al. Activation of a MnO2 cathode by water-stimulated Mg2+ insertion for a magnesium ion battery. Phys Chem Chem Phys, 2015, 17: 5256–5264

    Article  Google Scholar 

  233. Yamada A, Tanaka M, Tanaka K, Sekai K. Jahn-Teller instability in spinel Li–Mn–O. J Power Sources, 1999, 81-82: 73–78

    Article  Google Scholar 

  234. Kim HS, Arthur TS, Allred GD, et al. Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat Commun, 2011, 2: 427

    Article  Google Scholar 

  235. Park OK, Cho Y, Lee S, et al. Who will drive electric vehicles, olivine or spinel? Energy Environ Sci, 2011, 4: 1621–1633

    Article  Google Scholar 

  236. Spahr ME, Novák P, Haas O, Nesper R. Electrochemical insertion of lithium, sodium, and magnesium in molybdenum(VI) oxide. J Power Sources, 1995, 54: 346–351

    Article  Google Scholar 

  237. Sian TS, Reddy GB. Infrared spectroscopic studies on Mg intercalated crystalline MoO3 thin films. Appl Surf Sci, 2004, 236: 1–5

    Article  Google Scholar 

  238. Pandey GP, Agrawal RC, Hashmi SA. Magnesium ion-conducting gel polymer electrolytes dispersed with fumed silica for rechargeable magnesium battery application. J Solid State Electrochem, 2011, 15: 2253–2264

    Article  Google Scholar 

  239. Sutto TE, Duncan TT. Electrochemical and structural characterization of Mg ion intercalation into RuO2 using an ionic liquid electrolyte. Electrochim Acta, 2012, 79: 170–174

    Article  Google Scholar 

  240. Dueber RE, Fleetwood JM, Dickens PG. The insertion of magnesium into a-U3O8. Solid State Ionics, 1992, 50: 329–337

    Article  Google Scholar 

  241. Sutto TE, Duncan TT. Electrochemical and structural characterization of Mg ion intercalation into Co3O4 using ionic liquid electrolytes. Electrochim Acta, 2012, 80: 413–417

    Article  Google Scholar 

  242. Kamioka N, Ichitsubo T, Uda T, et al. Synthesis of spinel-type magnesium cobalt oxide and its electrical conductivity. Mater Trans, 2008, 49: 824–828

    Article  Google Scholar 

  243. Ichitsubo T, Adachi T, Yagi S, Doi T. Potential positive electrodes for high-voltage magnesium-ion batteries. J Mater Chem, 2011, 21: 11764–11772

    Article  Google Scholar 

  244. Sheha E. Studies on TiO2/reduced graphene oxide composites as cathode materials for magnesium-ion battery. Graphene. 2014, 3: 36–43

    Article  Google Scholar 

  245. Su S, Huang Z, NuLi Y, et al. A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte. Chem Commun, 2015, 51: 2641–2644

    Article  Google Scholar 

  246. Padhi AK. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc, 1997, 144: 1188–1194

    Article  Google Scholar 

  247. Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature, 2009, 458: 190–193

    Article  Google Scholar 

  248. Makino K, Katayama Y, Miura T, Kishi T. Electrochemical insertion of magnesium to Mg0.5Ti2(PO4)3. J Power Sources, 2001, 99: 66–69

    Article  Google Scholar 

  249. Makino K, Katayama Y, Miura T, Kishi T. Magnesium insertion into Mg0.5+y(FeyTi1-y)2(PO4)3. J Power Sources, 2001, 97-98: 512–514

    Article  Google Scholar 

  250. Makino K, Katayama Y, Miura T, Kishi T. Preparation and electrochemical magnesium insertion behaviors of Mg0.5+y(MeyTi1-y)2 (PO4)3 (Me = Cr, Fe). J Power Sources, 2002, 112: 85–89

    Article  Google Scholar 

  251. Huang Z, Masese T, Orikasa Y, et al. MgFePO4F as a feasible cathode material for magnesium batteries. J Mater Chem A, 2014, 2: 11578–11582

    Article  Google Scholar 

  252. Huang ZD, Masese T, Orikasa Y, Mori T, Yamamoto K. Vanadium phosphate as a promising high-voltage magnesium ion (de)-intercalation cathode host. RSC Adv, 2014, 5: 8598–8603

    Article  Google Scholar 

  253. Wu J, Gao G, Wu G, et al. MgVPO4F as a one-dimensional Mg-ion conductor for Mg ion battery positive electrode: a first principles calculation. RSC Adv, 2014, 4: 15014–15017

    Article  Google Scholar 

  254. Feng Z, Yang J, NuLi Y, et al. Preparation and electrochemical study of a new magnesium intercalation material Mg1.03Mn0.97SiO4. Electrochem Commun, 2008, 10: 1291–1294

    Article  Google Scholar 

  255. Feng Z, Yang J, Nuli Y, Wang J. Sol-gel synthesis of Mg1.03Mn0.97SiO4 and its electrochemical intercalation behavior. J Power Sources, 2008, 184: 604–609

    Article  Google Scholar 

  256. NuLi Y, Yang J, Wang J, Li Y. Electrochemical intercalation of Mg2+ in magnesium manganese silicate and its application as high-energy rechargeable magnesium battery cathode. J Phys Chem C, 2009, 113: 12594–12597

    Article  Google Scholar 

  257. NuLi Y, Yang J, Li Y, Wang J. Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries. Chem Commun, 2010, 46: 3794–3796

    Article  Google Scholar 

  258. Nuli Y, Zheng Y, Wang F, et al. MWNT/C/Mg1.03Mn0.97SiO4 hierarchical nanostructure for superior reversible magnesium ion storage. Electrochem Commun, 2011, 13: 1143–1146

    Article  Google Scholar 

  259. Li Y, Nuli Y, Yang J, Yilinuer T, Wang. MgFeSiO4 prepared via a molten salt method as a new cathode material for rechargeable magnesium batteries. Chinese Sci Bull, 2011, 56: 386–390

    Article  Google Scholar 

  260. NuLi Y, Zheng Y, Wang Y, Yang J, Wang J. Electrochemical intercalation of Mg2+ in 3D hierarchically porous magnesium cobalt silicate and its application as an advanced cathode material in rechargeable magnesium batteries. J Mater Chem, 2011, 21: 12437–12443

    Article  Google Scholar 

  261. Zheng Y, Nuli Y, Chen Q, et al. Magnesium cobalt silicate materials for reversible magnesium ion storage. Electrochim Acta, 2012, 66: 75–81

    Article  Google Scholar 

  262. Orikasa Y, Masese T, Koyama Y, et al. High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Sci Rep, 2014, 4: 5622

    Article  Google Scholar 

  263. Wu J, Gao G, Wu G, et al. Tavorite-FeSO4F as a potential cathode material for Mg ion batteries: a first principles calculation. Phys Chem Chem Phys, 2014, 16: 22974–22978

    Article  Google Scholar 

  264. Morgan D, Van der Ven A, Ceder G. Li conductivity in LixMPO4 (M=Mn, Fe, Co, Ni) olivine materials. Electrochem Solid State Lett, 2004, 7: A30–A32

    Article  Google Scholar 

  265. Bo SH, Grey CP, Khalifah PG. Defect-tolerant diffusion channels for M2+ ions in ribbon-type borates: structural insights into potential battery cathodes MgVBO4 and Mgx Fe2–xB2O5. Chem Mater, 2015, 27: 4630–4639

    Article  Google Scholar 

  266. Zhao Y, Ban C, Xu Q, Wei SH, Dillon AC. Charge-driven structural transformation and valence versatility of boron sheets in magnesium borides. Phys Rev B, 2011, 83: 1–5

    Google Scholar 

  267. Zhang R, Mizuno F, Ling C. Fullerenes: non-transition metal clusters as rechargeable magnesium battery cathodes. Chem Commun, 2015, 51: 1108–1111

    Article  Google Scholar 

  268. NuLi Y, Guo Z, Liu H, Yang J. A new class of cathode materials for rechargeable magnesium batteries: organosulfur compounds based on sulfur-sulfur bonds. Electrochem Commun, 2007, 9: 1913–1917

    Article  Google Scholar 

  269. NuLi Y, Chen Q, Wang W, et al. Carbyne polysulfide a s a novel cathode material for rechargeable magnesium batteries. Sci World J, 2014, 2014: 107918

    Article  Google Scholar 

  270. Sano H, Senoh H, Yao M, Sakaebe H, Kiyobayashi T. Mg2+ storage in organic positive-electrode active material based on 2,5-dimethoxy-1,4-benzoquinone. Chem Lett, 2012, 41: 1594–1596

    Article  Google Scholar 

  271. Chen Q, Nuli YN, Guo W, et al. PTMA/graphene as a novel cathode material for rechargeable magnesium batteries. Acta Phys Chim Sin, 2013, 29: 2295–2299

    Google Scholar 

  272. Kanakaiah V, Latha M, Sravan B, Palanisamy A, Rani JV. Rechargeable magnesium carbon-fluoride battery with electrolyte gel of ionic liquid and low molecular weight gelator. J Electrochem Soc, 2014, 161: A1586–A1592

    Article  Google Scholar 

  273. Giraudet J, Claves D, Guérin K, et al. Magnesium batteries: towards a first use of graphite fluorides. J Power Sources, 2007, 173: 592–598

    Article  Google Scholar 

  274. Kim H, Hong J, Park KY, et al. Aqueous rechargeable Li and Na ion batteries. Chem Rev, 2014, 114: 11788–11827

    Article  Google Scholar 

  275. Wang RY, Wessells CD, Huggins RA, Cui Y. Highly reversible open framework nanoscale electrodes for divalent ion batteries. Nano Lett, 2013, 13: 5748–5752

    Article  Google Scholar 

  276. Mizuno Y, Okubo M, Hosono E, et al. Suppressed activation energy for interfacial charge transfer of a Prussian blue analog thin film electrode with hydrated ions (Li+, Na+, and Mg2+). J Phys Chem C, 2013, 117: 10877–10882

    Article  Google Scholar 

  277. Mizuno Y, Okubo M, Hosono E, et al. Electrochemical Mg2+ intercalation into a bimetallic CuFe Prussian blue analog in aqueous electrolytes. J Mater Chem A, 2013, 1: 13055–13059

    Article  Google Scholar 

  278. Zhang R, Ling C, Mizuno F. A conceptual magnesium battery with ultrahigh rate capability. Chem Commun, 2015, 51: 1487–1490

    Article  Google Scholar 

  279. Zhao-Karger Z, Zhao X, Wang D, et al. Performance improvement of magnesium sulfur batteries with modified non-nucleophilic electrolytes. Adv Energy Mater, 2015, doi: 10.1002/aenm.201401155

    Google Scholar 

  280. Aurbach D, Gizbar H, Schechter A, et al. Electrolyte solutions for rechargeable magnesium batteries based on organomagnesium chloroaluminate complexes. J Electrochem Soc, 2002, 149: A115–A121

    Article  Google Scholar 

  281. Tran TT, Lamanna WM, Obrovac MN. Evaluation of Mg[N(SO2CF3)2]2/acetonitrile electrolyte for use in Mg-ion cells. J Electrochem Soc, 2012, 159: A2005–A2009

    Article  Google Scholar 

  282. Chen Q, Nuli YN, Yang J, Kailibinuer K, Wang JL. Effects of current co llectors on the electrochemical performance of electrolytes for rechargeable magnesium batteries. Acta Phys Chim Sin, 2012, 28: 2625–2631

    Google Scholar 

  283. Cheng Y, Liu T, Shao Y, et al. Electrochemically stable cathode current collectors for rechargeable magnesium batteries. J Mater Chem A, 2014, 2: 2473–2477

    Article  Google Scholar 

  284. Wall C, Zhao-Karger Z, Fichtner M. Corrosion resistance of current collector materials in bisamide based electrolyte for magnesium batteries. ECS Electrochem Lett, 2014, 4: C8–C10

    Article  Google Scholar 

  285. Yagi S, Tanaka A, Ichikawa Y, Ichitsubo T, Matsubara E. Electrochemical stability of magnesium battery current collectors in a grignard reagent-based electrolyte. J Electrochem Soc, 2013, 160: C83–C88

    Article  Google Scholar 

  286. Yagi S, Tanaka A, Ichitsubo T, Matsubara E. Electrochemical stability of metal electrodes for reversible magnesium deposition/dissolution in tetrahydrofuran dissolving ethylmagnesium chloride. ECS Electrochem Lett, 2012, 1: D11–D14

    Article  Google Scholar 

  287. Gofer Y, Chusid O, Gizbar H, et al. Improved electrolyte solutions for rechargeable magnesium batteries. Electrochem Solid State Lett, 2006, 9: A257–A260

    Article  Google Scholar 

  288. Sasaki I, Murase K, Ichii T, Uchimoto Y, Sugimura H. Anodic dissolution behavior of magnesium in hydrophobic ionic liquids. ECS Trans, 2011, 33: 65–70

    Article  Google Scholar 

  289. Kratochvil B, Lorah E, Garber C. Silver-silver nitrate couple as reference electrode in acetonitrile. Anal Chem, 1969, 41: 1793–1796

    Article  Google Scholar 

  290. Snook GA, Best AS, Pandolfo AG, Hollenkamp AF. Evaluation of a Ag|Ag+ reference electrode for use in room temperature ionic liquids. Electrochem Commun, 2006, 8: 1405–1411

    Article  Google Scholar 

  291. Ruch PW, Cericola D, Hahn M, Kötz R, Wokaun A. On the use of activated carbon as a quasi-reference electrode in non-aqueous electrolyte solutions. J Electroanal Chem, 2009, 636: 128–131

    Article  Google Scholar 

  292. Chen Y, Devine TM, Evans JW, et al. Examination of the corrosion behavior of aluminum current collectors in lithium/polymer batteries. J Electrochem Soc, 1999, 146: 1310–1317

    Article  Google Scholar 

  293. Myung ST, Hitoshi Y, Sun YK. Electrochemical behavior and passivation of current collectors in lithium-ion batteries. J Mater Chem, 2011, 21: 9891–9911

    Article  Google Scholar 

  294. Doe RE, Blomgren GE, Persson KA. Rechargeable magnesium ion cell components and assembly. US Patent, 20110159381 A1, 2011-06-30

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozhong Cao.

Additional information

Robert C. Massé received his BSc degree from the University of Wisconsin-Madison. He is currently a PhD candidate at the University of Washington under the supervision of Prof. Guozhong Cao. His research interests include electrode materials for electrochemical energy storage devices such as alkali-ion batteries.

Evan Uchaker received his PhD degree in materials science and engineering at the University of Washington under the supervision of Prof. Guozhong Cao. His research interests are focused on the development and understanding of kinetically stabilized and defected electrode materials for electrochemical energy storage devices such as alkali-ion batteries.

Guozhong Cao is Boeing-Steiner Professor of materials science and engineering, professor of chemical engineering, and adjunct professor of mechanical engineering at the University of Washington, and also a professor at Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences and Dalian University of Technology. His current research is focused on chemical processing of nanomaterials for energy related applications including solar cells, rechargeable batteries, supercapacitors, and hydrogen storage.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Massé, R.C., Uchaker, E. & Cao, G. Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries. Sci. China Mater. 58, 715–766 (2015). https://doi.org/10.1007/s40843-015-0084-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-015-0084-8

Keywords

  • Cathode Material
  • Propylene Carbonate
  • Science China Material
  • Black Phosphorus
  • Ionic Liquid Electrolyte