Skip to main content
Log in

The formation of glass: a quantitative perspective

  • Review
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

In constant use since ancient times, glass remains a highly valued material that is ubiquitous in daily life. Today, glass has become an indispensable and essential component in such fields as photonics, optical communications, photovoltaic cells, household appliances, vehicles, and building materials. However, one of major stumbling blocks for its optimal use is the low glass-forming ability (GFA) of many glass-forming compositions, which is far from being adequately solved. Understanding the nature of the GFAs of materials is the key to the development of new glasses with improved properties and manufacturability for various engineering applications. The rapid development of new glasses over the past several decades has led to increasingly complex material compositions. However, the phase diagrams of these materials have yet to be properly addressed even though such diagrams are extremely useful in rationally designing glass-forming compositions and predicting their behavior in pursuit of new functional glasses with particular desired properties. In this context, the present review strives to provide new insights into the formation of glasses and glass-forming regions through quantitative calculations and predictions based on a comprehensive survey and analysis of the existing experimental observations and theoretical considerations, a considerable portion of which stems from work performed in our own laboratory.

摘要

自古以来玻璃被广泛使用, 目前仍然是人类生活中无处不在的最有价值材料. 然而, 对众多材料而言, 较低的玻璃形成能力和玻璃形成区是困扰玻璃广泛而更好应用的难题. 深入研究和阐明玻璃形成能力的本质是发展应用新玻璃的关键所在. 新材料发展很快且组成愈加复杂, 然而在新玻璃研究中缺乏相关相图资料. 目前玻璃科学研究往往通过大量实验才获得一些数据, 需要的人、 财、 物力巨大且效率低下. 本文从玻璃科学基础问题出发综述了玻璃形成和玻璃形成区的最新进展, 通过探讨玻璃结构与性能、 玻璃形成与玻璃形成区计算和预测, 建立了一些简便、 快速、 具有预测性的研究方法, 并对玻璃形成和玻璃形成区从定性的理解到定量的预测研究和未来的发展趋势与努力的方向作了进一步的远景展望.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rao KJ. Structural Chemistry of Glasses. New York: Elsevier, 2002

    Google Scholar 

  2. Sakka S. Foundation and Application of Glass Science. Tokyo: Uchida Rokakuho Publishing Co., 1997

    Google Scholar 

  3. Shackelford JF, Doremus RH. Ceramic and Glass Materials: Structure, Properties and Processing. New York: Springer, 2008

    Google Scholar 

  4. Yamane M, Asahara Y, Asahara Y. Glasses for Photonics. London: Cambridge University Press, 2000

    Google Scholar 

  5. Jha A, Richards B, Jose G, et al. Rare-earth ion doped TeO2 and GeO2 glasses as laser materials. Prog Mater Sci, 2012, 57: 1426–1491

    Google Scholar 

  6. Wang WH, Dong C, Shek CH. Bulk metallic glasses. Mater Sci Eng R, 2004, 44: 45–89

    Google Scholar 

  7. Jiang ZH, Hu LL. Phase diagram structure model of glass. Sci China E, 1997, 40: 1–11

    Google Scholar 

  8. Zhang QY, Li T, Jiang ZH, Ji XH. 980-nm laser-diode-excited intense blue-upconversion in Tm3+/Yb3+-codoped gallate-bismuth-lead glasses. Appl Phys Lett, 2005, 87: 171911

    Google Scholar 

  9. Tanabe S, Fujiwara T, Yano T, et al. Glass and ceramic materials for photonics: preface. J Ceram Soc Jpn, 2008, 116: i

    Google Scholar 

  10. Zhang QY, Yang ZM, Yang GF, Jiang ZH. Enhanced blue-green-red up-conversion and 1.3-μm emission of Pr3+/Yb3+-codoped oxyhalide tellurite glasses with PbCl2 doping. J Phys Chem Solids, 2005, 66: 1281–1286

    Google Scholar 

  11. Zhang QY, Li T, Shi DM, Jiang ZH. Effects of PbF2 doping on structure and spectroscopic properties of Ga2O3-GeO2-Bi2O3-PbO glasses doped with rare-earths. J Appl Phys, 2006, 99: 033510

    Google Scholar 

  12. Stanworth JE. Physical Properties of Glass. Oxford: Clarendon Press, 1950

    Google Scholar 

  13. Muller G. Amorphisation processes in silicon, Curr Opin Solid State Mater Sci, 1998, 3: 364–370

    Google Scholar 

  14. Wakaki M. Optical Materials and Applications. Boca Raton: CRC press, 2013

    Google Scholar 

  15. Gan FX. Optical Glass. Beijing: Science Press, 1982 (In Chinese)

    Google Scholar 

  16. Digonnet MJF. Rare-earth-doped Fiber Lasers and Amplifiers. New York: Marcel Dekker, 2001

    Google Scholar 

  17. Sakka S, MacKenzie JD. Relation between apparent glass transition temperature and liquids temperature for inorganic glasses. J Non-Cryst Solids, 1971, 6: 145–162

    Google Scholar 

  18. Jiang ZH, Liu YH, Dai SX. New Functional Glasses. Beijing: Chemical Industry Press, 2008 (In Chinese)

    Google Scholar 

  19. Ye H, Hou CL. Optical Materials and Optical Components Fabrication Process. Hangzhou: Zhejiang University Press, 2014 (In Chinese)

    Google Scholar 

  20. Jiang ZH, Zhang QY. The structure of glass: a phase equilibrium diagram approach. Prog Mater Sci, 2014, 61: 144–215

    Google Scholar 

  21. Deng ZB. Introduction to Non-Crystalline Materials. Beijing: Science Press, 1987 (In Chinese)

    Google Scholar 

  22. Adam JL. Lanthanides in non-oxide glasses. Chem Rev, 2002, 102: 2461–2476

    Google Scholar 

  23. Karpukhina N, Hill RG, Law RV. Crystallisation in oxide glasses. Chem Soc Rev, 2014, 43: 2174–2186

    Google Scholar 

  24. Inayat A, Reinhardt B, Uhlig H, Einicke WD, Enke D. Silica monoliths with hierarchical porosity obtained from porous glasses. Chem Soc Rev, 2013, 42: 3753–3764

    Google Scholar 

  25. Qiu JR, Jiang XW, Zhu CS, et al. Manipulation of gold nanoparticles inside transparent materials. Angew Chem Int Ed, 2004, 43: 2230–2234

    Google Scholar 

  26. Zheng FQ. Dynamic and steady-state viscosity of the metallic glass Ni30Zr70. Acta Phys Sinica, 1991, 40: 262–268

    Google Scholar 

  27. Wang WK, Xu YF, Huang XM. Glass formation of Pd40Ni40P20 metallic glass. Sci China A, 1992, 12: 1305–1310 (in Chinese)

    Google Scholar 

  28. Tomozawa M, Doremus RH. Glass. New York: Academic Press, 1977

    Google Scholar 

  29. Sestak J, Mares JJ, Hubik P. Glassy, Amorphous and Nano-Crystalline Materials: Thermal Physics, Analysis, Structure and Properties. New York: Springer, 2011

    Google Scholar 

  30. Goldschmidt VM. Geochemische Verteilungsgesetze der Elemente, Part V, Isomorphie und Polymorphie der Sesquioxyde. Oslo: Die Lanthaniden-Kontraktion und ihre Konsequenzen, 1925

    Google Scholar 

  31. Fen D, Shi CX, Liu ZG. Introduction to Materials Science: an Integrated Approach. Beijing: Chemical Industry Press, 2002 (In Chinese)

    Google Scholar 

  32. Vogel W. Glass Chemistry. Berlin: Springer-Verlag, 1992

    Google Scholar 

  33. Greaves GN. X-ray Absorption Spectroscopy. In: Uhlmann DH, Kreidl NJ (eds.). Glass Science and Technology. New York: Academic Press, 1990, 1–76

    Google Scholar 

  34. Smekal AG. The structure of glass. J Soc Glass Technol, 1951, 35: 411–420

    Google Scholar 

  35. Zachariasen WH. The atomic arrangement in glass. J Am Chem-Soc, 1932, 54: 3841–3851

    Google Scholar 

  36. Zarzycki J. Glasses and Amorphous Materials. In: Cahn RW, Haasen P, Kramer EJ (eds.). Materials Science and Technology: a Comprehensive Treatment. Weinheim: VCH, 1991

    Google Scholar 

  37. Winter A. The glass formers and the periodic system of elements. Verres Refract, 1955, 9: 147–156

    Google Scholar 

  38. Stanworth JE. The structure of glass. J Soc Glass Technol, 1946, 30: 54–64

    Google Scholar 

  39. Stanworth JE. On the structure of glass. J Soc Glass Technol, 1948, 32: 154–172

    Google Scholar 

  40. Stanworth JE. The ionic structure of glass. J Soc Glass Technol, 1948, 32: 366–372

    Google Scholar 

  41. Stanworth JE. Tellurite glasses. J Soc Glass Technol, 1952, 36: 217–241

    Google Scholar 

  42. Stanworth JE. Glass formation from melts of nonmetallic compounds of the type AxBy. Phys Chem Glasses, 1979, 20: 116–118

    Google Scholar 

  43. Myuller RL. Structure of solid glasses on electro-conductivity data. Proc AS USSR Ser Phys, 1940, 4: 607–615

    Google Scholar 

  44. Myuller RL. Chemical peculiarities of polymeric glass forming substances and nature of glass formation. In: Vitreous State. Moscow: AS USSR Publishers, 1960

    Google Scholar 

  45. Myuller RL, Baydakov LA, Borisova ZU. Electro-conductivity of As-Se-Ge system in vitreous state. Bull Leningrad State Univ, 1962, 17: 94–102

    Google Scholar 

  46. Myuller RL. Chemistry of Solid State and Vitreous State. Leningrad: Leningrad State University Publishers, 1965

    Google Scholar 

  47. Borisova ZU. Chemistry of Glassy Semiconductors. Leningrad: LGU Publishers, 1972

    Google Scholar 

  48. Sun KH. Fundamental condition of glass-formation. J Am Ceram Soc, 1947, 30: 277–281

    Google Scholar 

  49. Rawson H. Inorganic Glass-forming Systems. London: Academic Press, 1967

    Google Scholar 

  50. Rawson H. Properties and Applications of Glass. New York: Elsevier, 1980, 318

  51. Rawson, H. The relationship between liquidus temperature, bond strength, and glass formation. Paris: 4th International Congress on Glass, 1956, 62–69

    Google Scholar 

  52. Turnbull D, Cohen MH. Modern Aspects of the Vitreous State, Vol. I. Mackenzie JD, Ed. London: Butterworths, 1988

  53. Johnson WL. Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials. Prog Mater Sci, 1986, 30: 81–134

    Google Scholar 

  54. Uhlmann DR. Glass-formation. J Non-Cryst Solids, 1977, 25: 43–85

    Google Scholar 

  55. Uhlmann DR. A kinetic treatment of glass formation. J Non-Cryst Solids, 1972, 7: 337–348.

    Google Scholar 

  56. Onorato PIK, Uhlmann DR. Nucleating heterogeneities and glass formation. J Non-Cryst Solids, 1976, 22: 367–378

    Google Scholar 

  57. Uhlmann DR, Kreidl NJ (eds.). Glass: Science and Technology, Vol. 1: Glass-Forming Systems. New York: Academic Press, 1983

    Google Scholar 

  58. Lu ZP, Liu CT. Glass formation criterion for various glass-forming systems. Phys Rev Lett, 2003, 91: 115505

    Google Scholar 

  59. Chen HS. Glassy metal. Rep Prog Phys, 1980, 43: 353–432

    Google Scholar 

  60. Sakka S. Handbook of Glass. Jiang GD, Ed. Beijing: China Architecture & Building Press, 1985 (in Chinese)

  61. Jiang YS, Hou LS. Handbook of New Glass. Shanghai: Glass and Enamel Press. 2004 (in Chinese)

    Google Scholar 

  62. Doremus RH. Glass Science (2nd ed.). New York: Wiley-Interscience, 1994

    Google Scholar 

  63. Zallen R. The Physics of Amorphous Solids. Weinheim: Wiley-VCH, 2007

    Google Scholar 

  64. Hewak DW, Brady D, Curry RJ, et al. Chalcogenide Glasses for Photonics Device Applications. In: Murggan GS (ed.). Photonic Glasses and Glass-Ceramics. Kerala: Research Signpost, 2010, 29–102

    Google Scholar 

  65. Hilton AR, Hayes DJ, Rechtin MD. Infrared absorption of some high purity chaicogenide glasses. J Non-Cryst Solids, 1975, 14: 319–338

    Google Scholar 

  66. Suryanarayana C, Inoue A. Bulk Metallic Glasses. London: CRC Press, 2011

    Google Scholar 

  67. Piarristeguy AA, Barthelemy E, Krbal M, et al. Glass formation in the GexTe100−x binary system: synthesis by twin roller quenching and co-thermal evaporation techniques. J Non-Cryst Solids, 2009, 355: 2088–2091

    Google Scholar 

  68. Zarzycki J, Naudin F. A study of kinetics of the metastable phase separation in the PbO-B2O3 system by small-angle scattering of X-rays. Phys Chem Glasses, 1967, 8: 11–18

    Google Scholar 

  69. Guggenheim EA. Modern Thermodynamics by the Methods of Willard Gibbs. London: Methuen, 1993

    Google Scholar 

  70. Gotze W. Recent tests of the mode-coupling theory for glassy dynamics. J Phys Condens Matter, 1999, 11: A1

    Google Scholar 

  71. Vedeshcheva NM, Shakhmatkin BA, Wright AC. The structure of sodium borosilicate glasses: thermodynamic modelling vs. experiment. J Non-Cryst Solids, 2004, 345–346: 39–44

    Google Scholar 

  72. Martinez LM, Angell CA. A thermodynamic connection to the fragility of glass-forming liquids. Nature, 2001, 410: 663–667

    Google Scholar 

  73. Hoffmann HJ. Thermodynamic aspects of melting and glass formation. Phys Chem Glasses, 2007, 48: 23–32

    Google Scholar 

  74. Greavesa GN, Sen S. Inorganic glasses, glass-forming liquids and amorphizing solids. Adv Phys, 2007, 56: 1–166

    Google Scholar 

  75. Dubey KS, Ramachandrarao P, Lele S. Thermodynamic and viscous behavior of undercooled liquids. Thermochimica Acta, 1996, 280–281: 25–62

    Google Scholar 

  76. Stillinger FH, Debenedetti PG. Glass transition thermodynamics and kinetics. Annu Rev Condens Matter Phys, 2013, 4: 263–285

    Google Scholar 

  77. Wunderlich B. Glass transition as a key to identifying solid phases. J Appl Polym Sci, 2007, 105: 49–59

    Google Scholar 

  78. Leuzzi L, Nieuwenhuizen TM. Thermodynamics of the Glassy State. London: CRC Press, 1986

    Google Scholar 

  79. Debenedetti PG, Stillinger FH. Supercooled liquids and the glass transition. Nature, 2001, 410: 259–267

    Google Scholar 

  80. Ediger MD, Angell CA, Nagel SR. Supercooled liquids and glasses. J Phys Chem, 1996, 100: 13200–13212

    Google Scholar 

  81. Brawer SA. Relaxation in Viscous Liquids and Glasses. Columbus: American Ceramic Society, 1985

    Google Scholar 

  82. Scherer W. Relaxation in Glass and Composites. New York: Wiley-Interscience, 1986

    Google Scholar 

  83. Smedskjaer MM, Jensen M, Yue YZ. Effect of thermal history and chemical composition on hardness of silicate glasses. J Non-Cryst Solids, 2010, 356: 893–897

    Google Scholar 

  84. Wang LM, Li ZJ, Chen ZM, et al. Glass transition in binary eutectic systems: best glass-forming composition. J Phys Chem B, 2010, 114: 12080–12084

    Google Scholar 

  85. Hruby A. Evaluation of glassforming tendency by means of DTA. Czech J Phys B, 1972, 22: 1187–1193

    Google Scholar 

  86. Uhlmann DR. Small angle X-ray scattering from glassy SiO2. J Non-Cryst Solids, 1974, 16: 325–327

    Google Scholar 

  87. Uhlmann DR. Glass formation, a contemporary view. J Am Ceram Soc, 1983, 66: 95–100.

    Google Scholar 

  88. Uhlmann DR. Polymer glasses and oxide glasses. J Non-Cryst Solids, 1980, 42: 119–142

    Google Scholar 

  89. Uhlmann DR. Crystallization and glass formation. J Non-Cryst Solids, 1985, 73: 585–592

    Google Scholar 

  90. Uhlmann DR. Nucleation, crystallization and glass formation. J Non-Cryst Solids, 1980, 38–39: 693–698

    Google Scholar 

  91. Uhlmann DR. On the internal nucleation of melting. J Non-Cryst Solids, 1980, 41: 347–357

    Google Scholar 

  92. Uhlmann DR. Kinetics of glass formation and devitrification behavior. J Phys Colloque, 1982, 43: 175–190

    Google Scholar 

  93. Yinnon H, Uhlmann DR. A kinetic treatment of glass formation. VII. Transient nucleation in non-isothermal crystallization during cooling. J Non-Cryst Solids, 1982, 50: 189–202

    Google Scholar 

  94. Dietzel A. The cation field strengths and their relation to devitrifying process to compound formation and to the melting points of silicates. Z Elektrochem, 1942, 48: 9–23

    Google Scholar 

  95. Dietzel A. On the so-called mixed alkali effect. Phys Chem Glasses, 1983, 24: 172–180

    Google Scholar 

  96. Dietzel A, Poegel H. Über die Glasbildung im System Kaliumnitrat-Calciumnitrat.Venice: 3rd International Congress on Glass. 1954, 219–243

  97. Sun KH. Aluminate glasses. Glass Ind. 1949, 30: 199–200

    Google Scholar 

  98. Winter A. The glassformers and the periodic system of elements. Verres Refract, 1955, 9: 147–156

    Google Scholar 

  99. Stanworth JE. Tellurite glasses. J Soc Glass Technol, 1954, 38: 425–435

    Google Scholar 

  100. Balta P. Introduction to the Physical Chemistry of the Vitreous State. Oxford: Taylor &Francis, 1976

    Google Scholar 

  101. Sokolov OK. Calculation of Viscosity in Molten Salts (Oxides). Washington DC: National Aeronautics and Space Administration, 1966

    Google Scholar 

  102. Qiu GM, Huang LZ. Glass Formation. Beijing: The Publishing House of Ordnance Industry, 1987 (In Chinese)

    Google Scholar 

  103. Fairman R, Ushkov B. Semiconducting Chalcogenide Glass I: Glass Formation, Structure, and Simulated Transformations in Chalcogenide Glasses. Amsterdam: Elsevier, 2004

    Google Scholar 

  104. Doremus RH. Structure of inorganic glasses. Ann Rev Mater Sci, 1972, 2: 93–120

    Google Scholar 

  105. Jiang ZH, Hu XY, Zhao XS. Determation of eutectic and phase separation regions in glass formation by thermodynamics method. J Chin Ceram Soc, 1982, 10: 309–318 (In Chinese)

    Google Scholar 

  106. Jiang ZH, Hu XY, Zhao XS. Prediction of eutectics and phase separation in the glass formation range using a thermodynamic. J Non-Cryst Solids, 1982, 52: 235–247

    Google Scholar 

  107. Charles RJ, Wagstaff FE. Metastable immiscibility in the B2O3-SiO2 system. J Am Ceram Soc, 1968, 51: 16–20

    Google Scholar 

  108. Slater JC. Introduction of Chemical Physics. New York: Mc-Graw-Hill Book Company, 1939

    Google Scholar 

  109. Cottrell AH. Theoretical Structural Metallurgy. New York: St. Martin’s Press, 1955

    Google Scholar 

  110. Barin I, Knacke O, Kubaschewski O. Thermochemical Properties of Inorganic Substances. Berlin: Springer-Verlag, 1977

    Google Scholar 

  111. Morey GW, Merwin HE. Phase equilibrium relationships in the binary system, sodium oxide-boric oxide, with some measurements of the optical properties of the glasses. J Am Chem Soc, 1936, 58: 2248–2254

    Google Scholar 

  112. Kracek FC. The system sodium oxide-silica. J Phys Chem, 1930, 34: 1583–1598

    Google Scholar 

  113. Ghanbari-Ahari K, Cameron AM. Phase diagram of Na2O-B2O3-SiO2 system. J Am Ceram Soc, 1993, 76: 2017–2022

    Google Scholar 

  114. Poulain M. Advanced glasses. Ann Chim Sci Mat, 2003, 28: 87–94

    Google Scholar 

  115. Lezal D, Pedlikova J, Zavadil J, Kostka P, Poulain M. Preparation and characterization of sulfide, selenide and telluride glasses. J Non-Cryst Solids, 2003, 326: 47–52

    Google Scholar 

  116. Arias AC, MacKenzie JD, McCulloch I, Rivnay J, Salleo A. Materials and applications for large area electronics: solution-based approaches. Chem Rev, 2010, 110: 3–24

    Google Scholar 

  117. France PW. Fluoride Glass Optical Fibres. Glasgow: Blackie, 1990

    Google Scholar 

  118. France PW. Optical Fibre Lasers and Amplifiers. Glasgow: Blackie, 2000

    Google Scholar 

  119. Casella JF, Flanagan MD, Lin S. Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change. Nature, 1981, 293: 302–305

    Google Scholar 

  120. Poulin M, Poulin M. ThF4 and LiF based glasses. J Non-Cryst Solids, 1983, 56: 57–61

    Google Scholar 

  121. Lucas J. Fluoride glasses. J Mater Sci, 1989, 24: 1–13

    Google Scholar 

  122. Jiang ZH, Hu XY, Song XY, Zhao XS. Research on some IR transimission halide glass systems. J Non-Cryst Solids, 1983, 56: 69–74

    Google Scholar 

  123. Fedorov VA, Babitsyna AA, Emel’yanova TA. Glass formation in the ZrF4-LaF3-BaF2-NaF system. Glass Phys Chem, 2001, 27: 512–519

    Google Scholar 

  124. Merkulov EB, Logoveev NA, Goncharuk VK, Yaroshenko RM. Glass formation in the ZrF4-BiF3-MeF (Me = Li, Na, K) fluoride systems. Glass Phys Chem, 2007, 33: 106–108

    Google Scholar 

  125. Babitsyna AA, Emel’yanova TA, Fedorov VA. Glass formation in quaternary systems of group I–IV fluorides. Inorg Mater, 2008, 44: 1378–1385

    Google Scholar 

  126. Higginbottom R, Shelby JE. Formation and properties of lead fluorogallate glasses. Phys Chem Glasses, 1998, 39: 281–285

    Google Scholar 

  127. Fedorov PP. Glass formation criteria for fluoride systems. Inorg Mater, 1997, 33: 1197–1205

    Google Scholar 

  128. Carrier GB. Characterization of glasses and ceramics with the analytical electron microscope. J Non-Cryst Solids, 1980, 38–39: 15–20

    Google Scholar 

  129. Zhao XJ, Li XJ, Chen JX. X-ray diffraction and molecular dynamics study of ThF4-BaF2-LiF glass. J Non-Cryst Solids, 1995, 184: 172–176

    Google Scholar 

  130. Kiihne K. Werkstoff Glass. Berlin: Akacleunie, 1976

    Google Scholar 

  131. Takayama S. Review: amorphous structures and their formation and stability. J Mat Sci, 1976, 11: 164–185

    Google Scholar 

  132. Dean JA, Lange NA. Lange’s Handbook of Chemistry (15th Ed.). New York: Mc-Graw-Hill Inc., 1999

    Google Scholar 

  133. Ugai YA, Shatillo VA. The polytherm of the ternary system zinc chloride-lead chloride-potassium chloride. J Phys Chem USSR. 1949, 23: 744–754

    Google Scholar 

  134. Iqbal T, Shahriari MR, Weitz G, Sigel Jr GH. New highly stabilized AlF3-Based glasses. J Non-Cryst Solids, 1995, 184: 190–193

    Google Scholar 

  135. Zakalyukin RM, Fedorov PP. Classification of fluoroaluminate glasses. Inorg Mater, 2003, 39: 640–644. Translated from Neorganicheskie Materialy. 2003, 39: 756–760

    Google Scholar 

  136. Yasui I, Hagihara H, Arai Y. Glass formation in the system of AlF3-BaF2-CaF2 and properties of these glasses. Mater Sci Forum, 1988, 32-33: 173–178

    Google Scholar 

  137. Graig DF, Brown JJ. Phase equilibria in the system CaF2-AlF3. J Am Ceram Soc, 1977, 60: 396–400

    Google Scholar 

  138. de Kozak A, Samouel M, Ranaudin J, Ferey G. The binary system BaF2/AlF3, Z Anorg Allg Chem, 1992, 613: 98–104

    Google Scholar 

  139. Imaoka M, Yamazaki T. Glass-formation ranges of ternary systems. IV. Tellurites of a-group elements. Rep Instit Industrial Sci Univ Tokyo, 1975, 24: 27–80

    Google Scholar 

  140. Imaoka M, Yamazaki T. Studies of the glass-formation range of silicate systems. Investigations on the glass-formation range. J Ceram Soc Jpn, 1963, 71: 215–223

    Google Scholar 

  141. Imaoka M, Yamazaki T. Glass-formation ranges of ternary systems. Part 1-Silicates of a-group elements (Graphical and tabulated data on glass formation ranges of ternary silicate systems). J Ceram Soc-Jpn, 1968, 76: 160–172

    Google Scholar 

  142. Imaoka M, Yamazaki T. The glass-forming region in the binary and ternary germanate systems. J Ceram Soc Jpn, 1964, 72, 182–191

    Google Scholar 

  143. Angell CA, Sare EI. Glass-forming composition regions and glass transition temperatures for aqueous electrolyte solutions. J Chem Phys, 1970, 52: 1058–1068

    Google Scholar 

  144. Angell CA. Liquid fragility and the glass transition in water and aqueous solutions. Chem Rev, 2002, 102: 2627–2649

    Google Scholar 

  145. Kirilenko IA. Glass formation in the ZnCl2-H2O system. Russian J Inorg Chem, 2013, 58: 1183–1186

    Google Scholar 

  146. Kirilenko IA. Glass formation in the Al2(SO4)3-Al(NO3)3-H2O system. Russian J Inorg Chem, 2010, 55: 602–606

    Google Scholar 

  147. Yang QH, Jiang ZH. Prediction of glass forming region by means of compositions with equal crystallization tendency. J Inorg Mater, 1994, 9: 399–403 (In Chinese)

    Google Scholar 

  148. Thilo E, Wiecker W, Stade H. Chemische Untersuchungen von Silicaten, XXXI. über Beziehungen zwischen dem Polymerisationsgrad silicatischer Anionen und ihrem Reaktionsvermögen mit Molybdänsäure. Zeitschrift für anorganische Chemie, 1965, 340: 261–276

    Google Scholar 

  149. Doremus RH. Glass Science. New York: Wiley-Interscience, 1973

    Google Scholar 

  150. Kaufmann L. Proceeding the 4th calphad. Maryland: Gaithersburg, 1975, 1–69

    Google Scholar 

  151. Weast RW, Lide D. CRC Handbook of Chemistry and Physics (70th Ed.). Boca Raton: CRC Press, 1990

    Google Scholar 

  152. Jänecke E. Das quaternäre System der Nitrate von Na-K-Ca-Mg und seine Teilsysteme. Z Elektrochem, 1942, 48: 453–512

    Google Scholar 

  153. Popescu MA. Non-Crystalline Chalcogenides. New York: Kluwer Academic Publishers, 2002

    Google Scholar 

  154. Vassilev V, Radonova M, Boycheva S. Glass-formation in the GeSe2-Sb2Te3-CdSe system. J Non-Cryst Solids, 2010, 356: 2728–2733

    Google Scholar 

  155. Ichikawa M, Wakasugi T, Kadono K. Glass formation, physicochemical properties, and structure of glasses based on Ga2S3-GeS2-Sb2S3 system. J Non-Cryst Solids, 2010, 356: 2235–2240

    Google Scholar 

  156. Aliev II, Aliev IG. Interactions and glass formation in the TlAs2Se4-Tl3As2Se3Te3 system. Russian J Inorg Chem, 2010, 55: 1142–1145

    Google Scholar 

  157. Lukic SR, Petrovic DM, Skuban SJ, Radonjic L, Cvejic Z. Formation of complex structural units and structure of As-S-Se-Te-I of glasses. J Optoelectron Adv Mater, 2003, 5: 1223–1229

    Google Scholar 

  158. Hristova-Vasileva T, Vassilev V, Aljihmani L, Boycheva S. Glass formation in the As2Se3-As2Te3-Sb2Te3 system. J Phys Chem Solids, 2008, 69: 2540–2543

    Google Scholar 

  159. Amova A, Hristova-Vasileva T, Aljihmani L. Region of glass formation and main physicochemical properties of glasses from the As2Se3-Ag4SSe-PbTe system. J Alloy Compd, 2013, 573: 32–36

    Google Scholar 

  160. Adam AB, Sakrani S, Wahab Y. Glass-formation region of ternary Sn-Sb-Se-based chalcogenide glasses. J Mater Sci, 2005, 40: 1571–1576

    Google Scholar 

  161. Minaev VS, Timoshenkov SP. Glass-formation in chalcogenide systems and periodic system. In: Fairman R, Ushkov B (eds.). Semiconducting Chalcogenide Glass I, Volume 78: Glass Formation, Structure, and Simulated Transformations in Chalcogenide Glasses. Amsterdam: Elsevier, 2004

    Google Scholar 

  162. Goryunova NA, Kolomiets BT. Glassy semiconductors. IV. On the problem of regularities of glass-formation. J Tech Phys, 1958, 28: 1922–1932

    Google Scholar 

  163. Goryunova NA, Kolomiets BT. Glassy semiconductors. IX. Glass-formation in compound chalcogenides based on arsenic sulfide and selenide. Solid State Phys, 1960, 2: 280–283

    Google Scholar 

  164. Borisova ZU. Glass-formation in chalcogenide systems and Periodic Table of elements. Proc AS USSR Non-Org Mater, 1971, 7: 1720–1724

    Google Scholar 

  165. Borisova ZU. Glass-formation in Chalcogenide Systems and the Periodic Table. Structure and Properties of Non-crystalline Semiconductors. Leningrad: Nauka Publishers, 1976

    Google Scholar 

  166. Hilton AR, Jones CE, Brau M. Non-oxide IVA-VA-VIA chalcogenide glasses. Phys Chem Glasses, 1966, 7: 105–126

    Google Scholar 

  167. Baker H. Okamoto H. ASM Handbook, Vol. 3-Alloy Phase Diagrams. Ohio: ASM International, 1992

    Google Scholar 

  168. Minaev VS. Glass-Forming Semiconductor Alloys. Moscow: Metallurgy Publishers, 1991

    Google Scholar 

  169. Minaev VS. New glasses and some peculiarities of glass-formation in ternary telluride systems. Phys Chem Glass, 1983, 9: 432–436

    Google Scholar 

  170. Vinogradova GZ. Glass formation and Phase Equilibriums in Chalcogenide Systems. Binary and Ternary Systems. Moscow: Nauka Publishers, 1984

    Google Scholar 

  171. He CX, Li GF. Precious Metal Alloy Phase-Diagrams. Beijing: Metallurgical Industry Press, 1986 (In Chinese)

    Google Scholar 

  172. Yu JQ. Binary Alloy Phase-Diagrams. Shanghai: Shanghai scientific & Technical Publishers, 1987 (In Chinese)

    Google Scholar 

  173. Ye DL. Handbook of Practical Inorganic Thermodynamic Data. Beijing: Metallurgical Industry Press, 1981 (In Chinese)

    Google Scholar 

  174. Yang QH, Jiang ZH. Using thermodynamics of phase diagram to predict the metallic glass-forming region. J Inorg Mater, 1994, 9: 89–93 (In Chinese)

    Google Scholar 

  175. Yang QH, Jiang ZH. The prediction of metallic glass forming region by the compositions of having equal crystallization tendency. J Shanghai Institute Build Mater, 1992, 5: 272–279 (In Chinese)

    Google Scholar 

  176. Boettinger WJ. In Rapidly Solidified Amporphous and Crystalline Alloys, Kear BH. Ed. New York: Elsevier, 1982

  177. Lu ZP, Shen J, Xing DW, Sun JF, Liu CT. Binary eutectic clusters and glass formation in ideal glass-forming liquids. Appl Phys Lett, 2006, 89: 071910

    Google Scholar 

  178. Haasen P. Metallic glasses. J Non-Cryst Solids, 1983, 56: 191–199

    Google Scholar 

  179. Davies HA. Amorphous Metallic Alloys. Ke C (Chinese Transl.). Beijing: Metallurgical Industry Press, 1989 (In Chinese)

    Google Scholar 

  180. Ding Y, Jiang ZH. The modern continuous phase transition theory of phase separation in binarysystems. J Inorg Mater, 1989, 4: 211–216 (In Chinese)

    Google Scholar 

  181. Jiang ZH. Some aspects on regions of glass formation and devitrification of glasses. J Chin Ceram Soc, 1981, 9: 323–339

    Google Scholar 

  182. Jiang ZH. Some aspects of phase separation in glasses. J Non-Cryst Solids, 1989, 112: 48–57

    Google Scholar 

  183. Englert WJ, Hummel FA. Notes on the system B2O3-SiO2-P2O5: II. ternary system. J Soc Glass Technol, 1955, 39: 121–127

    Google Scholar 

  184. Salmang H. Die Physikalischen und Chemischen Grundlagen der Glasfabrikation. Berlin: Springer, 1957

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin-Yuan Zhang.

Additional information

Zhonghong Jiang is a professor of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (CAS), and Academician of the CAS. He received his BSc degree in materials science from South China University of Technology in 1953. He has received several awards, including the 1st class National Scientific Technology Progress Award (1990) and the 2nd class National Scientific Technology Progress Awards (1985, 1989). His research interests include glass formation, laser glass, and optical glass and glass-fiber.

Qinyuan Zhang received his PhD degree in materials science from Shanghai Institute of Optics and Fine Mechanics, CAS in 1998. He is a Cheung Kong Scholar Professor at the School of Materials Science and Engineering, South China University of Technology. He has authored and co-authored more than 200 peer-reviewed international journal articles, including Progress in Materials Science, Materials Science and Engineering R: Reports, Journal of the American Ceramic Society, Journal of Non-Crystalline Solids, and more than 20 patents. His research activity focuses on glass science and technology, and luminescent materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, ZH., Zhang, QY. The formation of glass: a quantitative perspective. Sci. China Mater. 58, 378–425 (2015). https://doi.org/10.1007/s40843-015-0048-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-015-0048-z

Keywords

Navigation