Skip to main content
Log in

Tunable magnetic and electrical behaviors in perovskite oxides by oxygen octahedral tilting

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The oxides with perovskite structure possess abundant physical properties, such as magnetism, dielectricity, photoelectricity, ferroelectricity, etc. The oxygen ions in the perovskite unit cell constitute an octahedral distribution. The deformation or tilting of the special oxygen octahedra structure leads to new performances or properties change. Here, we give a review of the relationship between magnetic and electrical behaviors and oxygen octahedral tilting in several typical perovskite oxides. An understanding of how to tune these properties by controlling the tilting during the sample growth can more effectively guide the design of new structures for high performance and inspiring their potential applications.

中文摘要

钙钛矿结构氧化物具有极其多样化的物理性能, 如磁性、介电性、光电性、铁电性等. 钙钛矿晶胞中的氧离子排布成八面 体结构. 氧八面体的变形或旋转会改变原有的物理特性, 甚至产生原本不存在的新性能. 本文综述了几种典型钙钛矿氧化物的氧八面 体旋转与磁性能和电性能的关系, 同时探讨了如何通过样品制备控制微观的八面体旋转, 从而更有效的设计具有高性能的新结构, 及 其潜在应用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Galasso FS. Structure, Properties, and Preparation of Perovskite-Type Compounds. London: Pergamon Press, 1969

  2. Howard CJ, Stokes HT. Group theoretical analysis of octahedral tilting in perovskites. Acta Cryst B, 1998, 54: 782–789

    Article  Google Scholar 

  3. Tidrow C. Mapping comparison of Goldschmidt’s tolerance factor with perovskite structural conditions. Ferroelectrics, 2014, 470:13–27

    Google Scholar 

  4. Millis AJ, Shraiman BI, Mueller R. Dynamic Jahn-Teller effect and colossal magnetoresistance in La1-xSrxMnO3. Phys Rev Lett, 1996,77: 175–178

    Article  Google Scholar 

  5. Pauling L. The Nature of the Chemical Bond (3rd Ed.). Ithaca: Cornell University Press, 1960

  6. Wainer E, Soloman S. Titanium Alloy Manufacturing Co. Report 8–9, 1942

    Google Scholar 

  7. Corker DL, Glazer AM, Whatmore RW. A neutron diffraction investigation into the rhombohedral phases of the perovskite series PbZr1-xTixO3. J Phys Condens Mat, 1998, 10: 6251–6269

    Article  Google Scholar 

  8. Glazer AM, The classification of tilted octahedral in perovskites. Acta Cryst B, 1972, 28: 3384–3392

    Article  Google Scholar 

  9. He J, Borisevich A, Kalinin SV, et al. Control of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry. Phys Rev Lett, 2010, 105: 227203

    Article  Google Scholar 

  10. Bousquet E, Dawber M, Stucki N, et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature, 2008, 452: 732–736

    Article  Google Scholar 

  11. Von Hippel AR. Molecular Science and Molecular Engineering. Cambridge: MIT Press, 1959

  12. Megaw H. Crystal structure of barium titanate. Nature, 1945, 155: 484–485

    Google Scholar 

  13. Bhalla AS, Guo R, Roy R. The perovskite structure—a review of its role in ceramic science and technology. Mat Res Innovat, 2000, 4: 3–26

    Article  Google Scholar 

  14. Reaney I, Colla E, Setter N. Dielectric and struc tural characteristics of Ba-based and Sr-based complex perovskites as a function of tolerance factor. Jpn J Appl Phys 1, 1994, 33: 3984–3990

    Article  Google Scholar 

  15. Eng HW, Barnes PW, Auer BM, et al. Investigations of the electronic structure of d(0) transition metal oxides belonging to the perovskite family. J Solid State Chem, 2003, 175: 94–109

    Article  Google Scholar 

  16. Wang Y, Sui Y, Ren P, et al. Correlation between the structural distortions and thermoelectric characteristics in La1-xAxCoO3 (A = Ca and Sr). Inorg Chem, 2010, 49: 3216–3223

    Article  Google Scholar 

  17. Pei S, Jorgensen JD, Dabrowski B, et al. Structural phase diagram of the Ba1-xKxBiO3 system. Phys Rev B, 1990, 41: 4126–4141

    Article  Google Scholar 

  18. Perillat-Merceroz C, Gauthier G, Roussel P. Synthesis and study of a Ce-doped La/Sr titanate for solid oxide fuel cell anode operating directly on methane. Chem Mater, 2011, 23: 1539–1550

    Article  Google Scholar 

  19. Jin KX, Chen CL, Wang SL, et al. Photoresponsive character of double-doped La2/3(Ca1/3Sr2/3)1/3MnO3 film. J Appl Phys, 2004, 96: 1537–1539

    Article  Google Scholar 

  20. Goodenough JB. Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Phys Rev, 1955, 100: 564–573

    Article  Google Scholar 

  21. Kanamori J. Crystal distortion in magnetic compounds. J Appl Phys, 1960, 31: S14–S23

    Article  Google Scholar 

  22. Ramesh R, Spaldin NA. Multiferroics: progress and prospects in thin films. Nat mater, 2007, 6: 1476–1122

    Article  Google Scholar 

  23. Nan CW, Bichurin MI, Dong S, Viehland D, Srinivasan G. Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys, 2008, 103: 031101

    Article  Google Scholar 

  24. Glazer AM. Simple ways of determining pervoskite structures. Actacryst A, 1975 31: 756–762

    Google Scholar 

  25. Goldschmidt VM. The laws of crystal chemistry. Naturwissenschaften, 1926, 14: 477–48526

    Article  Google Scholar 

  26. Wells AF. Structural Inorganic Chemistry. London: Oxford Science publications, 1995

    Google Scholar 

  27. Müller U. Inorganic Structural Chemistry. Chichester: Wiley & Sons Ltd, 1993

    Google Scholar 

  28. Galasso FS, Katz L. Preparation and structure of Ba5Ta4O15 and related compounds. Acta Cryst, 1961, 14: 647

    Article  Google Scholar 

  29. Goodenough JB. Electronic and ionic transport properties and other physical aspects of perovskites. Rep Prog Phys, 2004, 67: 1915–1993

    Article  Google Scholar 

  30. Rondinelli JM, Spaldin NA. Structure and properties of functional oxide thin films: insights from electronic-structure calculations. Adv Mater, 2011, 23: 3363–3381

    Article  Google Scholar 

  31. Rondinelli JM, Coh S. Large isosymmetric reorientation of oxygen octahedra rotation axes in epitaxially strained perovskites. Phys Rev Lett, 2011, 106: 235502

    Article  Google Scholar 

  32. Wang D, Salje EKH, Mi SB, Jia CL, Bellaiche L. Multidomains made of different structural phases in multiferroic BiFeO3: a first-principles-based study. Phys Rev B, 2013, 88: 134107

    Article  Google Scholar 

  33. Prosandeev S, Wang D, Ren W, et al. Novel nanoscale twinned phases in perovskite oxides. Adv Funct Mater, 2013, 23: 234–240

    Article  Google Scholar 

  34. Mitchell JF, Argyriou, DN, Potter CD, et al. Structural phase diagram of La1-xSrxMnO3+d: relationship to magnetic and transport properties. Phys Rev B, 1996, 54: 6172–6183

    Article  Google Scholar 

  35. Kennedy BJ, Howard CJ, Chakoumakos BC. Phase transitions in perovskite at elevated temperatures-a powder neutron diffraction study. J Phys Condens Mat, 1999, 11: 1479–1488

    Article  Google Scholar 

  36. Dabrowski B, Avdeev M, Chmaissem O, et al. Freezing of octahedral tilts below the Curie temperature in SrRu1-vO3 perovskites. Phys Rev B, 2005, 71: 104411

    Article  Google Scholar 

  37. Aso R, Kan D, Shimakawa Y, Kurata H. Atomic level observation of octahedral distortions at the perovskite oxide heterointerface. Sci Rep, 2013, 3: 2214

    Article  Google Scholar 

  38. Iliev MN, Abrashev MV, Lee HG, et al. Raman spectroscopy of orthorhombic perovskitelike YMnO3 and LaMnO3. Phys Rev B, 1998, 57: 2872–2877

    Article  Google Scholar 

  39. Bielecki J, Svedlindh P, Tibebu DT, et al. Structural and magnetic properties of isovalently substituted multiferroic BiFeO3: insights from Raman spectroscopy. Phys Rev B, 2012, 86: 184422

    Article  Google Scholar 

  40. Xu Q, Zheng X, Wen Z, et al. Enhanced room temperature ferromagnetism in porous BiFeO3 prepared using cotton templates. Solid State Commun, 2011, 151: 624–627

    Article  Google Scholar 

  41. Kiselev SV, Kshnyakina AN, Ozerov RP, et al. A neutron-diffraction study of the magnetic ordering and atomic displacements in some iron-containing perovskite substances with special dielectric properties. Fizika Tverdogo Tela, 1963, 5: 3312–3316

    Google Scholar 

  42. Teague JR, Gerson R, James WJ. Dielectric hysteresis in single crystal BiFeO3. Solid State Commun. 1970, 8: 1073

    Article  Google Scholar 

  43. Moreau JM, Michel C, Gerson R, et al. Ferroelectric BiFeO3 X-ray and neutron diffraction study. J Phys Chem Solids, 1971, 32: 1315–1320

    Article  Google Scholar 

  44. Filip’ev VS, Smol’yaninov IP, Fesenko EG, et al. Synthesis of BiFeO3 and determination of the unit cell. Kristallografiâ, 1960, 5: 913–914

    Google Scholar 

  45. Kubel F, Schmid H. Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Cryst B, 1990, 46: 698–702

    Article  Google Scholar 

  46. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A, 1976, 32: 751–767

    Article  Google Scholar 

  47. Palewicz A, Przenioslo R, Sosnowska I, Hewat AW. Atomic displacements in BiFeO3 as a function of temperature: neutron diffraction study. Acta Cryst A, 2007, 63: 537–544

    Article  Google Scholar 

  48. Megaw HD, Darlington CNW. Geometrical and structural relations in rhombohedral perovskites. Acta Cryst A, 1975, 31: 161–173

    Article  Google Scholar 

  49. Ederer C, Spaldin NA. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys Rev B, 2005, 71: 060401

    Article  Google Scholar 

  50. Lebeugle D, Colson D, Forget A, et al. Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Phys Rev Lett,2008, 100: 227602

    Article  Google Scholar 

  51. Wang N, Cheng J, Pyatakov A, et al. Multiferroic properties of modified BiFeO3-PbTiO3-based ceramics: random-field induced release of latent magnetization and polarization. Phys Rev B, 2005, 72: 104434

    Article  Google Scholar 

  52. Bai F, Wang J, Wuttig M, et al. Destruction of spin cycloid in (111)(c)-oriented BiFeO3 thin films by epitiaxial constraint: enhanced polarization and release of latent magnetization. Appl Phys Lett, 2005, 86: 032511

    Article  Google Scholar 

  53. Dzyaloshinskii IE. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J Phys Chem Solids, 1958, 4: 241–255

    Article  Google Scholar 

  54. Moriya T. Anisotropic superexchange interaction and weak ferromagnetism. Phys Rev, 1960, 120: 91–98

    Article  Google Scholar 

  55. Shvartsman VV, Kleemann W, Haumont R, Kreisel J. Large bulk polarization and regular domain structure in ceramic BiFeO3. Appl Phys Lett, 2007, 90: 172115

    Article  Google Scholar 

  56. Wang JJ, Hu JM, Yang TN, et al. Effect of strain on voltage-controlled magnetism in BiFeO3-based heterostructures. Sci Rep, 2014, 4, 4453

    Google Scholar 

  57. Heron JT, Bosse JL, He Q, et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature, 2014, 516: 370–373

    Article  Google Scholar 

  58. Zeches RJ, Rossell MD, Zhang JX, et al. A strain-driven morphotropic phase boundary in BiFeO3. Science, 2009, 326: 977–980

    Article  Google Scholar 

  59. He Q, Chu YH, Heron JT, et al. Electrically controllable spontaneous magnetism in nanoscale mixed phase multiferroics. Nat Commun, 2011, 2: 225

    Article  Google Scholar 

  60. Asamitsu A, Moritomo Y, Tomioka Y, et al. A structural phase-transition induced by an external magnetic-field. Nature, 1995, 373: 407–409

    Article  Google Scholar 

  61. Gong GQ, Canedy C, Xiao G, et al. Colossal magnetoresistance of 1,000,000-fold magnitude achieved in the antiferromagnetic phase of La1-xCaxMnO3. Appl Phys Lett, 1995, 67: 1783–1785

    Article  Google Scholar 

  62. Caignaert V, Maignan A, Raveau B. Up to 50,000 percent resistance variation in magnetoresistive polycrystalline perovskites Ln2/3Sr1/3 MnO3 (Ln = Nd; Sm). Solid State Commun, 1995, 95: 357–359

    Article  Google Scholar 

  63. Van Roosmalen JAM, Cordfunke EHP, Helmholdt RB, et al. The defect chemistry of LaMnO3±d: 2. structural aspects of LaMnO3+d. J Solid State Chem, 1994, 110: 100–105

    Article  Google Scholar 

  64. Millis AJ, Littlewood PB, Shraiman BI. Double exchange alone does not explain the resistivity of La1-xSrxMnO3. Phys Rev Lett, 1995, 74: 5144–5147

    Article  Google Scholar 

  65. Fujishiro H, Fukase T, Ikebe M. Charge ordering and sound velocity anomaly in La1-xSrxMnO3 (x = 0.5). J Phys Soc Japan, 1998, 67: 2582–2585

    Article  Google Scholar 

  66. Cesaria M, Caricato AP, Maruccio G, Martino M. LSMO-growing opportunities by PLD and applications in spintronics. J Phys Conf Ser, 2011, 292: 012003

    Article  Google Scholar 

  67. Dabrowski B, Avdeev M, Chmaissem O, et al. Freezing of octahedral tilts below the Curie temperature in SrRu1-vO3 perovskites. Phys Rev B, 2005, 71: 104411

    Article  Google Scholar 

  68. Dagotto A, Hotta T, Moreo A. Colossal magnetoresi stant materials: the key role of phase separation. Phys Rep, 2001, 344: 1–153

    Article  Google Scholar 

  69. Park JH, Vescovo E, Kim HJ, et al. Direct evidence for a half-metallic ferromagnet. Nature, 1998, 392: 794–796

    Article  Google Scholar 

  70. Cockayne E, Burton BP. Phonons and static dielectric constant in CaTiO3 from first principles. Phys Rev B, 2000, 62: 3735–3743

    Article  Google Scholar 

  71. Miyake S, Ueda R. On polymorphic change of BaTiO3. J Phys Soc Jpn, 1946, 1: 32–33

    Article  Google Scholar 

  72. Cohen RE. Origin of ferroelectricity in pervoskite oxides. Nature, 1992, 6382: 136–138

    Article  Google Scholar 

  73. Colla EL, Reaney IM, Setter N. Effect of structural changes in complex perovskites on the temperature coefficient of the relative permittivity. J Appl Phys, 1993, 3414–3425

    Google Scholar 

  74. Reaney IM, Ubic R. Dielectric and structural characteristics of perovskites and related materials as a function of tolerance factor. Ferroelectrics, 1999, 228: 23–38

    Article  Google Scholar 

  75. Kolar D, Stadler Z, Gaberscek S, Suvorov D. Ceramic and dielectric properties of selected compositions in the BaO-TiO2-Nd2O3 system. Ber D t Keram Ges, 1978, 55: 346–347

    Google Scholar 

  76. Ohsato H, Ohhashi T, Kato H, et al. Microwave dielectric-properties and structure of the Ba6-3xSm8+2xTi18O54 solid solution. Jpn J Appl Phys 1, 1993, 34: 187–191

    Article  Google Scholar 

  77. Fukuda K, Kitoh R, Awai I. Microwave characteristics of mixed phases of BaPr2Ti4O12-BaPr2Ti5O14 ceramics. J Mater Res, 1995, 10: 312–319

    Article  Google Scholar 

  78. Ohsato H, Mizuta M, Ikoma T, et al. Microwave dielectric properties of tungsten bronze type Ba6-3xR8+2xTi18O54 (R = La, Pr, Nd and Sm) solid solutions. J Ceram Soc Japan, 1998, 106: 178–182

    Article  Google Scholar 

  79. Valant M, Suvorov D, Rawn CJ. Intrinsic reasons for variations in dielectric properties of Ba6-3xR8+2xTi18O54 (R = La-Gd) solid solutions. Jpn J Appl Phys 1, 1999, 38: 2820–2826

    Article  Google Scholar 

  80. Ohsato H. Science of tungstenbronze-type like Ba6-3xR8+2xTi18O54 (R= rare earth) microwave dielectric solid solutions. J Eur Ceram Soc, 2001, 21: 2703–2711

    Article  Google Scholar 

  81. Seidel J, Martin LM, He Q, et al. Conduction at domain walls in oxide multiferroics. Nat Mater, 2009, 8: 229–234

    Article  Google Scholar 

  82. Catalan G, Scott JF. Physics and application of bismuth ferrite. Adv Mater, 2009, 21: 2463–2485

    Article  Google Scholar 

  83. Daumont CJM, Farokhipoor S, Ferri A, et al. Tuning the atomic and domain structure of epitaxial films of multiferroic BiFeO3. Phys Rev B, 2010, 81: 144115

    Article  Google Scholar 

  84. Diéguez O, Aguado-Puente P, Junquera J, Íñiguez J. Domain walls in a perovskite oxide with two primary structural order parameters: first-principles study of BiFeO3. Phys Rev B, 2013, 87: 024102

    Article  Google Scholar 

  85. Borisevich AY, Chang HJ, Huijben M, et al. Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. Phys Rev Lett, 2010, 105: 087204

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanhua Lin or Cewen Nan.

Additional information

Ya Gao received her BSc degree from the School of Materials Science and Engineering, Tsinghua University in 2011. And then she joined Prof. Nan’s group as a PhD candidate. Her research interests focus on multiferroic magnetoelectric materials and their applications in the field of memories and spintronic devices.

Yuanhua Lin is “Changjiang Scholar” distinguished professor of Materials Science at the School of Materials Science and Engineering, Tsinghua University, Beijing, China. He received his BSc degree from East China Institute of Technology, MSc degree from the Chemical and Metallurgic Institute, Chinese Academy of Sciences, and PhD degree from Tsinghua University. He was a Japan Society for the Promotion of Science scholar at the University of Tokyo in 2005. His main research interests are functional oxide-based ceramics and thin films including high dielectric constant ceramics and thin films for high energy density capacitors applications, high-temperature oxide thermoelectric materials and devices for energy conversion.

Cewen Nan is a professor of Materials Science at the School of Materials Science and Engineering, Tsinghua University, Beijing, China. Before joining the faculty of Tsinghua University in 1999, he had worked in Wuhan University of Technology, Wuhan, China, since 1985. He was elected academician of Chinese Academy of Sciences in 2011 and the Third-World Academy of Sciences (TWAS) in 2012. His recent research focuses on functional materials, including multiferroic magnetoelectric materials, thermoelectric oxides, functional polymer-based composites, and solid state electrolytes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Wang, J., Wu, L. et al. Tunable magnetic and electrical behaviors in perovskite oxides by oxygen octahedral tilting. Sci. China Mater. 58, 302–312 (2015). https://doi.org/10.1007/s40843-015-0047-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-015-0047-0

Keywords

Navigation