Science China Materials

, Volume 58, Issue 2, pp 126–131 | Cite as

Amine/acid composite Janus nanosheets

  • Yijiang Liu
  • Qian Wang
  • Xiaozhong Qu
  • Fuxin Liang
  • Zhenzhong Yang


Janus materials have witnessed fast development due to their diversified promising performances and practical applications. Compared with their spherical counterparts, Janus nanosheets have gained more concerns for their highly anisotropic shape besides chemistry. Herein, 3.5 nm ultrathin and flexible Janus nanosheets with carboxyl group terminated onto one side are fabricated by surface sol-gel process of the self-assembled monolayer of an amphiphilic silane onto the template CaCO3 particle firstly. Amine/acid composite Janus nanosheets are further derived from these carboxyl group terminated silica Janus nanosheets by selective conjugation with amine groups onto the other side. The amine/acid composite Janus nanosheets are dually pH responsive, and well dispersible in aqueous solution at both low and high pH levels. The nanosheets are aggregated forming multi-layered face-to-back superstructures at intermediate pH levels. This is originated by the opposite electrostatic interaction between the carboxyl and the amine groups. This approach can be extended to other silanes, and a huge family of Janus nanosheets is expected with tunable composition and performance.


Amine Group Atom Transfer Radical Polymer Trimethoxysilane Science China Material Pickering Emulsion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


含酸酐两亲硅烷偶联剂在颗粒表面吸附形成自组装单分子膜, 可通过溶胶-凝胶法制备二氧化硅Janus纳米片. 本文通过对二氧化硅Janus纳米片选择改性在一侧偶联氨基, 制备了羧基/氨基复合的Janus纳米片. 纳米片两侧的羧基与氨基具有不同的pH值响应性, 表现出相应的荷电性质及润湿性. 二者共同作用, 引起纳米片特殊的分散和聚集行为. 在较低或较高pH水平, 纳米片表现为Janus特性, 分散良好. 在中间pH范围, 纳米片两侧羧基氨基相反电荷相互吸引导致层层组装聚集并沉淀.


  1. 1.
    de Gennes PG. Soft matter. Rev Mod Phys, 1992, 64: 645–648CrossRefGoogle Scholar
  2. 2.
    Hu J, Zhou SX, Sun YY, et al. Fabrication, properties and applications of Janus particles. Chem Soc Rev, 2012, 41: 4356–4378CrossRefGoogle Scholar
  3. 3.
    Jiang S, Granick S, Schneider HJ. Janus Particle Synthesis, Self-Assembly and Applications. London: Royal Society of Chemistry, 2012CrossRefGoogle Scholar
  4. 4.
    Walther A, Müller AHE. Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev, 2013, 113: 5194–5261CrossRefGoogle Scholar
  5. 5.
    Zhang HB, Hao R, Jackson JK, et al. Janus ultrathin film from multi-level self-assembly at air-water interfaces. Chem Commun, 2014, 50: 14843–14846CrossRefGoogle Scholar
  6. 6.
    Liang FX, Zhang CL, Yang ZZ. Rational design and synthesis of Janus composites. Adv Mater, 2014, 26: 6944–6949CrossRefGoogle Scholar
  7. 7.
    Nonomura Y, Komura S, Tsujii K. Adsorption of disk-shaped Janus beads at liquid-liquid interfaces. Langmuir, 2004, 20: 11821–11823CrossRefGoogle Scholar
  8. 8.
    Liang FX, Shen K, Qu XZ, et al. Inorganic Janus nanosheets. Angew Chem Int Ed, 2011, 50: 2379–2382CrossRefGoogle Scholar
  9. 9.
    Walther A, André X, Drechsler M, et al. Janus discs. J Am Chem Soc, 2007, 129: 6187–6198CrossRefGoogle Scholar
  10. 10.
    Wang Y, Zhong WHK, Ji JY, et al. Blossoming of nanosheet structures via a disturbed self-assembly. Nano Lett, 2014, 14: 3474–3480CrossRefGoogle Scholar
  11. 11.
    Qi H, Wang WD, Li CY. Janus polymer single crystal nanosheet via evaporative crystallization. ACS Macro Lett, 2014, 3: 675–678CrossRefGoogle Scholar
  12. 12.
    Dorvee JR, Derfus AM, Bhatia SN, et al. Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones. Nat Mater, 2004, 3: 896–899CrossRefGoogle Scholar
  13. 13.
    Kirillova A, Stoychev G, Ionov L, et al. Platelet Janus particles with hairy polymer shells for multifunctional materials. ACS Appl Mater Interfaces, 2014, 6: 13106–13114CrossRefGoogle Scholar
  14. 14.
    Liang FX, Liu JG, Zhang CL, et al. Janus hollow spheres by emulsion interfacial self-assembled sol-gel process. Chem Commun, 2011, 47: 1231–1233CrossRefGoogle Scholar
  15. 15.
    Yang HL, Liang FX, Wang X, et al. Responsive Janus composite nanosheets. Macromolecules, 2013, 46: 2754–2759CrossRefGoogle Scholar
  16. 16.
    Zheng ZK, Nottbohm CT, Turchanin A. Janus nanomembranes: a generic platform for chemistry in two dimensions. Angew Chem Int Ed, 2010, 49: 8493–8497CrossRefGoogle Scholar
  17. 17.
    Zhang LM, Yu JW, Yang MM, et al. Janus graphene from asymmetric two-dimensional chemistry. Nat Commun, 2012, 4: 1443–1149CrossRefGoogle Scholar
  18. 18.
    Liu YJ, Liang FX, Wang Q, et al. Flexible responsive Janus nanosheets. Chem Commun, doi: 10.1039/C4CC08420AGoogle Scholar
  19. 19.
    Wang JZ, Zhao GH, Li YF, et al. Reversible immobilization of glucoamylase onto magnetic chitosan nanocarriers. Appl Microbiol Biot, 2012, 97: 681–692CrossRefGoogle Scholar
  20. 20.
    Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Phys Sci, 1973, 241: 20–22CrossRefGoogle Scholar
  21. 21.
    Tu FQ, Lee D. Shape changing and amphiphilicity reversing Janus particles with pH-responsive surfactant properties. J Am Chem Soc, 2014, 136: 9999–10006CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Polymer Physics and Chemistry, Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations