Skip to main content
Log in

Superhard materials: recent research progress and prospects

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Over the past several decades, great endeavors have been devoted to superhard materials research, among which two topics are of central focus. One is to understand hardness microscopically and reveal the controlling factors for superhardness, which can be used to guide the design of novel superhard crystals; the other is to synthesize superhard materials with enhanced comprehensive performance (i.e., hardness, fracture toughness, and thermal stability), with the ambition to synthesize materials harder than natural diamond. We proposed a microscopic understanding of the indentation hardness as the combined resistance of chemical bonds in a material to indentation, and established a microscopic hardness model for covalent and polar covalent crystals, which was further generalized to polycrystalline materials. Guided by the polycrystalline hardness model, we successfully synthesized nanotwinned cubic boron nitride and diamond bulks under high pressure and high temperature. These materials exhibit simultaneous improvement of hardness, fracture toughness, and thermal stability, designating a new direction for superhard materials research.

摘要

半个世纪以来, 超硬材料研究领域一直存在两个重要难题亟待解决: (1) 硬度的微观理论或超硬材料的设计原理; (2) 合成出综合性能(硬度、 韧性和热稳定性)更加优异的新型超硬材料, 尤其是实现人工材料比天然金刚石更硬这一梦想. 在过去的十多年里, 我们提出了一个基本假设—微观上硬度等于晶体单位面积中化学键对压入的综合阻抗, 由此建立了共价和极性共价晶体硬度的微观模型, 实现了晶体硬度的定量预测. 随后, 我们将晶体硬度的微观模型推广至多晶固体, 建立了多晶共价材料硬度的理论模型. 最近, 以多晶硬度模型为指导, 我们在高温高压条件下分别合成出纳米孪晶结构的立方氮化硼和金刚石块材. 与单晶材料相比, 纳米孪晶立方氮化硼和金刚石的硬度、 韧性和热稳定性均得到明显改善, 为发展高性能超硬材料探索出一条崭新的途径.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haines J, Leger JM, Bocquillon G. Synthesis and design of super-hard materials. Annu Rev Mater Res, 2001, 31: 1–23

    Google Scholar 

  2. Man-made diamonds. Chem Eng News, 1955, 33: 718

  3. Wentorf RH. Cubic form of boron nitride. J Chem Phys, 1957, 26: 956–956

    Google Scholar 

  4. Gilman JJ, Cumberland RW, Kaner RB. Design of hard crystals. Int J Refract Met Hard Mater, 2006, 24: 1–5

    Google Scholar 

  5. Ivanovskii AL. The search for novel superhard and incompressible materials on the basis of higher borides of s, p, d metals. J Superhard Mater, 2011, 33: 73–87

    Google Scholar 

  6. Riedel R. Novel ultrahard materials. Adv Mater, 1994, 6: 549–560

    Google Scholar 

  7. Veprek S. Recent search for new superhard materials: go nano! J Vac Sci Technol A, 2013, 31: 050822

    Google Scholar 

  8. Kaner RB, Gilman JJ, Tolbert SH. Designing superhard materials. Science, 2005, 308: 1268–1269

    Google Scholar 

  9. Veprek S. The search for novel, superhard materials. J Vac Sci Technol A, 1999, 17: 2401–2420

    Google Scholar 

  10. Brazhkin VV, Lyapin AG, Hemley RJ. et al. Harder than diamond: dreams and reality. Philos Mag A, 2002, 82: 231–253

    Google Scholar 

  11. Meyer E. Analysis of hardness examination and hardness. Zt Vereins Deutscher Ingenieure, 1908, 52: 645–654

    Google Scholar 

  12. Gilman JJ. The Science of Hardness Testing and Its Research Applications. Metals Park: American Society for Metals, 1973

    Google Scholar 

  13. Liu AY, Cohen ML. Prediction of new low compressibility solids. Science, 1989, 245: 841–842

    Google Scholar 

  14. Teter DM. Computational alchemy: the search for new superhard materials. MRS Bull, 1998, 23: 22–27

    Google Scholar 

  15. Chen XQ, Niu H, Li D, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics, 2011, 19: 1275–1281

    Google Scholar 

  16. Gao FM, He JL, Wu ED, et al. Hardness of covalent crystals. Phys Rev Lett, 2003, 91: 015502

    Google Scholar 

  17. He JL, Wu ED, Wang HT, et al. Ionicities of boron-boron bonds in B12 icosahedra. Phys Rev Lett, 2005, 94: 015504

    Google Scholar 

  18. Guo X, Li L, Liu Z, et al. Hardness of covalent compounds: roles of metallic component and d valence electrons. J Appl Phys, 2008, 104: 023503

    Google Scholar 

  19. Tian Y, Xu B, Zhao Z, et al. Microscopic theory of hardness and design of novel superhard crystals. Int J Refract Met Hard Mater, 2012, 33: 93–106

    Google Scholar 

  20. Simunek A, Vackar J. Hardness of covalent and ionic crystals: first-principle calculations. Phys Rev Lett, 2006, 96: 085501

    Google Scholar 

  21. Li KY, Wang XT, Zhang FF, et al. Electronegativity identification of novel superhard materials. Phys Rev Lett, 2008, 100: 235504

    Google Scholar 

  22. Zhao Y, He DW, Daemen LL, et al. Superhard B-C-N materials synthesized in nanostructured bulks. J Mater Res, 2002, 17: 3139–3145

    Google Scholar 

  23. Solozhenko VL, Gregoryanz E. Synthesis of superhard materials. Mater Today, 2005, 8: 44–51

    Google Scholar 

  24. Solozhenko VL, Andrault D, Fiquet G, et al. Synthesis of superhard cubic BC2N. Appl Phys Lett, 2001, 78: 1385–1387

    Google Scholar 

  25. Solozhenko VL, Kurakevych OO, Andrault D, et al. Ultimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5. Phys Rev Lett, 2009, 102: 015506

    Google Scholar 

  26. Solozhenko VL, Kurakevych OO, Oganov AR, et al. On the hardness of a new boron phase, orthorhombic γ-B28. J Superhard Mater, 2008, 30: 428–429

    Google Scholar 

  27. He DW, Zhao YS, Daemen L, et al. Boron suboxide: as hard as cubic boron nitride. Appl Phys Lett, 2002, 81: 643–645

    Google Scholar 

  28. Levine JB, Tolbert SH, Kaner RB, et al. Advancements in the search for superhard ultra-incompressible metal borides. Adv Funct Mater, 2009, 19: 3519–3533

    Google Scholar 

  29. Gu Q, Krauss G, Steurer W, et al. Transition metal borides: superhard versus ultra-incompressihle. Adv Mater, 2008, 20: 3620–3626

    Google Scholar 

  30. Chung HY, Weinberger MB, Levine JB, et al. Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. Science, 2007, 316: 436–439

    Google Scholar 

  31. Crowhurst JC, Goncharov AF, Sadigh B, et al. Synthesis and characterization of the nitrides of platinum and iridium. Science, 2006, 311: 1275–1278

    Google Scholar 

  32. Cumberland RW, Weinberger MB, Gilman JJ, et al. Osmium diboride, an ultra-incompressible, hard material. J Am Chem Soc, 2005, 127: 7264–7265

    Google Scholar 

  33. Ono S, Kikegawa T, Ohishi Y, et al. A high-pressure and high-temperature synthesis of platinum carbide. Solid State Commun, 2005, 133: 55–59

    Google Scholar 

  34. Qin J, He D, Wang J, et al. Is rhenium diboride a superhard material? Adv Mater, 2008, 20: 4780–4783

    Google Scholar 

  35. Young AF, Sanloup C, Gregoryanz E, et al. Synthesis of novel transition metal nitrides IrN2 and OsN2. Phys Rev Lett, 2006, 96: 155501

    Google Scholar 

  36. Gou H, Dubrovinskaia N, Bykova E, et al. Discovery of a superhard iron tetraboride superconductor. Phys Rev Lett, 2013, 111: 157002

    Google Scholar 

  37. Dubrovinskaia N, Dubrovinsky L, Solozhenko VL, et al. Comment on “Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure”. Science, 2007, 318: 1550–1550

    Google Scholar 

  38. Li B, Sun H, Chen C, et al. First-principles calculation of the indentation strength of FeB4. Phys Rev B, 2014, 90: 014106

    Google Scholar 

  39. Zhang M, Lu M, Du Y, et al. Hardness of FeB4: density functional theory investigation. J Chem Phys, 2014, 140: 174505

    Google Scholar 

  40. Irifune T, Kurio A, Sakamoto S, et al. Ultrahard polycrystalline diamond from graphite. Nature, 2003, 421: 599–600

    Google Scholar 

  41. Dubrovinskaia N, Solozhenko VL, Miyajima N, et al. Superhard nanocomposite of dense polymorphs of boron nitride: noncarbon material has reached diamond hardness. Appl Phys Lett, 2007, 90: 101912

    Google Scholar 

  42. Solozhenko VL, Kurakevych OO, Le Godec Y, et al. Creation of nanostuctures by extreme conditions: high-pressure synthesis of ultrahard nanocrystalline cubic boron nitride. Adv Mater, 2012, 24: 1540–1544

    Google Scholar 

  43. Tian Y, Xu B, Yu D, et al. Ultrahard nanotwinned cubic boron nitride. Nature, 2013, 493: 385–388

    Google Scholar 

  44. Huang Q, Yu D, Xu B, et al. Nanotwinned diamond with unprecedented hardness and stability. Nature, 2014, 510: 250–253

    Google Scholar 

  45. Pugh SF. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag, 1954, 45: 823–843

    Google Scholar 

  46. Chen XQ, Niu H, Franchini C, et al. Hardness of T-carbon: density functional theory calculations. Phys Rev B, 2011, 84: 121405

    Google Scholar 

  47. Nix WD, Gao H. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids, 1998, 46: 411–425

    Google Scholar 

  48. Gilman JJ. Flow of covalent solids at low-temperatures. J Appl Phys, 1975, 46: 5110–5113

    Google Scholar 

  49. Phillips JC. Ionicity of chemical bond in crystals. Rev Mod Phys, 1970, 42: 317–356

    Google Scholar 

  50. Siethoff H. Homopolar band gap and thermal activation parameters of plasticity of diamond and zinc-blende semiconductors. J Appl Phys, 2000, 87: 3301–3305

    Google Scholar 

  51. Pauling L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals: an Introduction to Modern Structural Chemistry. New York: Cornell University Press, 1960

    Google Scholar 

  52. Liu HY, Li QA, Zhu L, et al. Superhard polymorphs of diamond-like BC7. Solid State Commun, 2011, 151: 716–719

    Google Scholar 

  53. Liu HY, Li QA, Zhu L, et al. Superhard and superconductive polymorphs of diamond-like BC3. Phys Lett A, 2011, 375: 771–774

    Google Scholar 

  54. Li Q, Chen WJ, Xia Y, et al. Superhard phases of B2O: an isoelectronic compound of diamond. Diamond Relat Mater, 2011, 20: 501–504

    Google Scholar 

  55. Li QA, Wang H, Tian YJ, et al. Superhard and superconducting structures of BC5. J Appl Phys, 2010, 108: 023507

    Google Scholar 

  56. Fan XF, Wu HY, Shen ZX, et al. A first-principle study on the structure, stability and hardness of cubic BC2N. Diamond Relat Mater, 2009, 18: 1278–1282

    Google Scholar 

  57. Guo X, Liu Z, Luo X, et al. Theoretical hardness of the cubic BC2N. Diamond Relat Mater, 2007, 16: 526–530

    Google Scholar 

  58. Li Y, Li Q, Ma Y, et al. B2CO: a potential superhard material in the B-C-O system. Europhys Lett, 2011, 95: 66006

    Google Scholar 

  59. Li DX, Yu DL, He JL, et al. First-principle calculation on structures and properties of diamond-like B3C10N3 compound. J Alloys Compd, 2009, 481: 855–857

    Google Scholar 

  60. Zhao Z, Cui L, Wang LM, et al. Bulk Re2C: crystal structure, hardness, and ultra-incompressibility. Cryst Growth Des, 2010, 10: 5024–5026

    Google Scholar 

  61. Wang ZH, Kuang XY, Zhong MM, et al. Pressure-induced structural transition of OsN2 and effect of metallic bonding on its hardness. Europhys Lett, 2011, 95: 66005

    Google Scholar 

  62. Shao X. Prediction of a low-dense BC2N phase. Chin Phys Lett, 2011, 28: 057101

    Google Scholar 

  63. Wang H, Li Q, Wang H, et al. Design of superhard ternary compounds under high pressure: SiC2N4 and Si2CN4. J Phys Chem C, 2010, 114: 8609–8613

    Google Scholar 

  64. Hu M, Zhao Z, Tian F, et al. Compressed carbon nanotubes: a family of new multifunctional carbon allotropes. Sci Rep, 2013, 3: 1331

    Google Scholar 

  65. Zhao Z, Tian F, Dong X, et al. Tetragonal allotrope of group 14 elements. J Am Chem Soc, 2012, 134: 12362–12365

    Google Scholar 

  66. Zhao Z, Xu B, Zhou XF, et al. Novel superhard carbon: C-centered orthorhombic C8. Phys Rev Lett, 2011, 107: 215502

    Google Scholar 

  67. Xiong M, Fan CZ, Zhao ZS, et al. Novel three-dimensional boron nitride allotropes from compressed nanotube bundles. J Mater Chem C, 2014, 2: 7022–7028

    Google Scholar 

  68. Amsler M, Flores-Livas J, Lehtovaara L, et al. Crystal structure of cold compressed graphite. Phys Rev Lett, 2012, 108: 065501

    Google Scholar 

  69. Baburin IA, Proserpio DM, Saleev VA, et al. From zeolite nets to sp3 carbon allotropes: a topology-based multiscale theoretical study. Phys Chem Chem Phys, 2015, 17: 1332–1338

    Google Scholar 

  70. Bu H, Zhao M, Dong W, et al. A metallic carbon allotrope with superhardness: a first-principles prediction. J Mater Chem C, 2014, 2: 2751–2757

    Google Scholar 

  71. Zhang M, Liu H, Du Y, et al. Orthorhombic C32: a novel superhard sp3 carbon allotrope. Phys Chem Chem Phys, 2013, 15: 14120–14125

    Google Scholar 

  72. Hu M, Huang Q, Zhao Z, et al. Superhard and high-strength yne-diamond semimetals. Diamond Relat Mater, 2014, 46: 15–20

    Google Scholar 

  73. Xu B, Tian YJ. Microscopic models of materials mechanical properties. Prog Phys, 2014, 34: 191–201

    Google Scholar 

  74. Gilman JJ. Chemistry and Physics of Mechanical Hardness. Hoboken: John Wiley & Sons, 2009

    Google Scholar 

  75. Tse JS. Intrinsic hardness of crystalline solids. J Superhard Mater, 2010, 32: 177–191

    Google Scholar 

  76. Chaudhri MM, Lim YY. Harder than diamond? Just fiction. Nat Mater, 2005, 4: 4

    Google Scholar 

  77. Zhang X, Wang Y, Lv J, et al. First-principles structural design of superhard materials. J Chem Phys, 2013, 138: 114101

    Google Scholar 

  78. Hall EO. The deformation and ageing of mild steel: III. discussion of results. Proc Phys Soc London B, 1951, 64: 747–753

    Google Scholar 

  79. Petch NJ. The cleavage strength of polycrystals. J Iron Steel Ins, 1953, 174: 25–28

    Google Scholar 

  80. Tse JS, Klug DD, Gao F. Hardness of nanocrystalline diamonds. Phys Rev B, 2006, 73: 140102

    Google Scholar 

  81. Sumiya H, Irifune T. Hardness and deformation microstructures of nano-polycrystalline diamonds synthesized from various carbons under high pressure and high temperature. J Mater Res, 2007, 22: 2345–2351

    Google Scholar 

  82. Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper. Science, 2009, 323: 607–610

    Google Scholar 

  83. Lu L, Shen Y, Chen X, et al. Ultrahigh strength and high electrical conductivity in copper. Science, 2004, 304: 422–426

    Google Scholar 

  84. Sumiya H, Uesaka S, Satoh S, et al. Mechanical properties of high purity polycrystalline cBN synthesized by direct conversion sintering method. J Mater Sci, 2000, 35: 1181–1186

    Google Scholar 

  85. Yan CS, Mao HK, Li W, et al. Ultrahard diamond single crystals from chemical vapor deposition. Phys Status Solidi A, 2004, 201: R25–R27

    Google Scholar 

  86. Lammer A. Mechanical properties of polycrystalline diamonds. Mater Sci Technol, 1988, 4: 949–955

    Google Scholar 

  87. Sussmann RS, Pickles CSJ, Brandon JR, et al. CVD diamond windows for infrared synchrotron applications. Il Nuovo Cimento D, 1998, 20: 503–525

    Google Scholar 

  88. Dubrovinskaia N, Dub S, Dubrovinsky L, et al. Superior wear resistance of aggregated diamond nanorods. Nano Lett, 2006, 6: 824–826

    Google Scholar 

  89. Lu K, Lu L, Suresh S, et al. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science, 2009, 324: 349–352

    Google Scholar 

  90. Brazhkin V, Dubrovinskaia N, Nicol M, et al. What does “harder than diamond” mean? Nat Mater, 2004, 3: 576–577

    Google Scholar 

  91. Chung HY, Weinberger MB, Levine JB, et al. Response to comment on “Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure”. Science, 2007, 318:1550

    Google Scholar 

  92. Brookes CA, Green P. Deformation of magnesium-oxide crystals by softer indenters and sliders. Nature Phys Sci, 1973, 246: 119–122

    Google Scholar 

  93. Brookes CA, Shaw MP. Cumulative deformation of magnesium-oxide crystals by softer sliders. Nature, 1976, 263: 760–762

    Google Scholar 

  94. Brookes EJ, Comins JD, Daniel RD, et al. A study of plastic deformation profiles of impressions in diamond. Diamond Relat Mater, 2000, 9: 1115–1119

    Google Scholar 

  95. Tian Y, Xu B, Yu D, et al. Controversy about ultrahard nanotwinned cBN. Nature, 2013, 502: E1–E2

    Google Scholar 

  96. Xu B, Tian YJ. Ultrahardness: measurement and enhancement. J Phys Chem C, In press

  97. Luo X, Liu Z, Xu B, et al. Compressive strength of diamond from first-principles calculation. J Phys Chem C, 2010, 114: 17851–17853

    Google Scholar 

  98. Roundy D, Cohen M. Ideal strength of diamond, Si, and Ge. Phys Rev B, 2001, 64: 212103

    Google Scholar 

  99. Zhang R, Veprek S, Argon A, et al. Anisotropic ideal strengths and chemical bonding of wurtzite BN in comparison to zincblende BN. Phys Rev B, 2008, 77: 172103

    Google Scholar 

  100. Zhang RF, Sheng SH, Veprek S, et al. First principles studies of ideal strength and bonding nature of AlN polymorphs in comparison to TiN. Appl Phys Lett, 2007, 91: 031906

    Google Scholar 

  101. Umeno Y, Shiihara Y, Yoshikawa N, et al. Ideal shear strength under compression and tension in C, Si, Ge, and cubic SiC: an ab initio density functional theory study. J Phys Condens Matter, 2011, 23: 385401

    Google Scholar 

  102. Zhang RF, Legut D, Wen XD, et al. Bond deformation paths and electronic instabilities of ultraincompressible transition metal diborides: case study of OsB2 and IrB2. Phys Rev B, 2014, 90: 094115

    Google Scholar 

  103. Yip S. Nanocrystals: the strongest size. Nature, 1998, 391: 532–533

    Google Scholar 

  104. Li X, Wei Y, Lu L, et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature, 2010, 464: 877–880

    Google Scholar 

  105. Jiang K, Li Q, Fan S, et al. Nanotechnology: spinning continuous carbon nanotube yarns. Nature, 2002, 419: 801

    Google Scholar 

  106. Fan S, Chapline MG, Franklin NR, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 1999, 283: 512–514

    Google Scholar 

  107. Wollmershauser JA, Feigelson BN, Gorzkowski EP, et al. An extended hardness limit in bulk nanoceramics. Acta Mater, 2014, 69: 9–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Tian.

Additional information

Bo Xu is a professor of College of Materials Science and Engineering, Yanshan University. He received his PhD from University of Nebraska-Lincoln (2002). After postdoctoral work at University of Maryland, College Park, he joined the State Key Laboratory of Metastable Materials Science and Technology, Yanshan University in 2006. His research interests include superhard materials and thermoelectric materials.

Yongjun Tian is a professor of College of Materials Science and Engineering, Yanshan University. He received his PhD from Institute of Physics, Chinese Academy of Sciences, in 1994, and worked as a postdoctoral fellow in Universität Jena supported by the Humboldt Research Fellowships from 1996 to 1998. His research interests include design and synthesis of novel metastable materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Tian, Y. Superhard materials: recent research progress and prospects. Sci. China Mater. 58, 132–142 (2015). https://doi.org/10.1007/s40843-015-0026-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-015-0026-5

Keywords

Navigation