Skip to main content
Log in

Crystal structure and phase diagrams of iron-based superconductors

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Since the discovery of high-temperature superconductivity (HTS) in iron-based compounds, a variety of systems with different spacer layers have been fabricated. Concurrently, considerable experimental and theoretical effort has been expended exploring the characteristics and source of HTS in iron-based superconductors. However, the origin of this HTS remains unresolved to date, while considerable debate exists regarding the underlying physics of the normal-state properties of iron-based compounds in particular. In this short review, we will briefly summarize the crystal structures and phase diagrams of the iron-based superconducting systems, aiming to discover potential avenues for the development of new superconductors with higher superconducting transition temperatures (T c), along with indications of the specifics of the HTS mechanism in these substances.

中文摘要

自铁基化合物中发现高温超导电性以来, 人们已经合成了众多具有不同间隔层的体系. 同时科学家们在揭示铁基超导体高温超导电性的长征中投入了大量的实验和理论上的努力. 但是直到今天其高温超导电性的起源仍然没有得以解决, 特别是对正常态性质背后的物理还存在很多争论. 本综述总结了铁基超导体系的晶体结构以及相图, 并提供了一些指向具有更高转变温度T c的新超导体的提示和高温超导机理的线索.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kamihara Y, Watanabe T, Hirano M, et al. Iron-based layered superconductor La[O1−x Fx]FeAs (x = 0.05–0.12) with T c = 26 K. J Am Chem Soc, 2008, 130: 3296–3297

    Google Scholar 

  2. Chen XH, Wu T, Wu G, et al. Superconductivity at 43 K in SmFeAsO1−x Fx. Nature, 2008, 453: 761–762

    Google Scholar 

  3. Kamihara Y, Hiramatsu H, Hirano M, et al. Iron-based layered superconductor: LaOFeP. J Am Chem Soc, 2006, 128: 10012–10013

    Google Scholar 

  4. Ren ZA, Lu W, Yang J, et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1−x Fx]FeAs. Chin Phys Lett, 2008, 25: 2215–2216

    Google Scholar 

  5. Ren ZA, Che GC, Dong XL, et al. Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1−δ (Re = rare-earth metal) without fluorine doping. EPL, 2008, 83: 17002

    Google Scholar 

  6. Hsu FC, Luo JY, Yeh KW, et al. Superconductivity in the PbO-type structure α-FeSe. Proc Natl Acad Sci USA, 2008, 105: 14262–14264

    Google Scholar 

  7. Medvedev S, McQueen TM, Troyan IA, et al. Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure. Nat Mater, 2009, 8: 630–633

    Google Scholar 

  8. Margadonna S, Takabayashi Y, Ohishi Y, et al. Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (T c = 37 K). Phys Rev B, 2009, 80: 064506

    Google Scholar 

  9. Yeh KW, Huang TW, Huang YL, et al. Tellurium substitution effect on superconductivity of the α-phase iron selenide. EPL, 2008, 84: 37002

    Google Scholar 

  10. Sales BC, Sefat AS, McGuire MA, et al. Bulk superconductivity at 14 K in single crystals of Fe1+y TexSe1−x . Phys Rev B, 2009, 79: 094521

    Google Scholar 

  11. Deng Z, Wang XC, Liu QQ, et al. A new 111 type iron pnictide superconductor LiFeP. EPL, 2009, 87: 3704

    Google Scholar 

  12. Wang XC, Liu QQ, Lv YX, et al. The superconductivity at 18 K in LiFeAs system. Solid State Commun, 2008, 148: 538–540

    Google Scholar 

  13. Parker DR, Pitcher MJ, Baker PJ, et al. Structure, antiferromagnetism and superconductivity of the layered iron arsenide NaFeAs. Chem Commun, 2009: 2189–2191

    Google Scholar 

  14. Parker DR, Smith MJP, Lancaster T, et al. Control of the competition between a magnetic phase and a superconducting phase in cobalt-doped and nickel-doped NaFeAs using electron count. Phys Rev Lett, 2010,104: 057007

    Google Scholar 

  15. Wang AF, Luo XG, Yan YJ, et al. Phase diagram and calorimetric properties of NaFe1−x CoxAs. Phys Rev B, 2012, 85: 224521

    Google Scholar 

  16. Wang AF, Lin JJ, Cheng P, et al. Phase diagram and physical properties of NaFe1−x CuxAs single crystals. Phys Rev B, 2013, 88: 094516

    Google Scholar 

  17. Rotter M, Tegel M and Johrendt D. Superconductivity at 38 K in the Iron Arsenide (Ba1−x Kx)Fe2As2. Phys Rev Lett, 2008, 101: 107006

    Google Scholar 

  18. Wu G, Chen H, Wu T et al. Different resistivity response to spin density wave and superconductivity at 20 K in Ca1−x NaxFe2As2. J Phys Condens Matt, 2008, 20: 422201

    Google Scholar 

  19. Ronning F, Klimczuk T, Bauer ED, et al. Synthesis and properties of CaFe2As2 single crystals. J Phys Condens Matt, 2008, 20: 322201.

    Google Scholar 

  20. Sasmal K, Lv B, Lorenz B, et al. Superconducting Fe-based compounds (A 1−x Srx)Fe2As2 with A = K and Cs with Transition Temperatures up to 37 K. Phys Rev Lett, 2008, 101: 107007

    Google Scholar 

  21. Guo J, Jin S, Wang G. et al. Superconductivity in the iron selenide KxFe2Se2 (0 ⩽ x ⩽ 1.0). Phys Rev B, 2010, 82: 180520 (R)

    Google Scholar 

  22. Krzton-Maziopa A, Shermadini Z, Pomjakushina E, et al. Synthesis and crystal growth of Cs0.8(FeSe0.98)2: a new iron-based superconductor with T c = 27 K. J Phys Condens Matt, 2011, 23: 052203

    Google Scholar 

  23. Wang AF, Ying JJ, Yan YJ, et al. Superconductivity at 32 K in single-crystalline RbxFe2–y Se2. Phys Rev B, 2011, 83: 060512

    Google Scholar 

  24. Fang MH, Wang HD, Dong CH, et al. Fe-based superconductivity with T c = 31 K bordering an antiferromagnetic insulator in (Tl, K) FexSe2. EPL, 2011, 94: 27009

    Google Scholar 

  25. Kudo K, Nishikubo Y, Nohara M. Coexistence of superconductivity and charge density wave in SrPt2As2. J Phys Soc Jpn, 2010, 79: 123710

    Google Scholar 

  26. Anand VK, Kim H, Tanatar MA, et al. Superconducting and normal-state properties of APd2As2 (A = Ca, Sr, Ba) single crystals. Phys Rev B, 2013, 87: 224510

    Google Scholar 

  27. Ying TP, Chen XL, Wang G, et al. Observation of superconductivity at 30–46 K in AxFe2Se2 (A = Li, Na, Ba, Sr, Ca, Yb, and Eu). Sci Rep, 2012, 2: 426

    Google Scholar 

  28. Burrard-Lucas M, Free DG, Sedlmaier SJ, et al. Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer. Nat Mater, 2013, 12: 15–19

    Google Scholar 

  29. Scheidt EW, Hathwar VR, Schmitz D, et al. Superconductivity at T c = 44 K in LixFe2Se2(NH3)y. Eur J Phys B, 2012, 85: 279

    Google Scholar 

  30. Tegel M, Johansson S, Weiss V, et al. Synthesis, crystal structure and spin-density-wave anomaly of the iron arsenide-fluoride SrFeAsF. EPL, 2008, 84: 67007

    Google Scholar 

  31. Matsuishi S, Inoue Y, Nomura T, et al. Superconductivity induced by co-doping in quaternary fluoroarsenide CaFeAsF. J Am Chem Soc, 2008, 130: 14428–14429

    Google Scholar 

  32. Hanna T, Muraba Y, Matsuishi S, et al. Hydrogen in layered iron arsenides: indirect electron doping to induce superconductivity. Phys Rev B, 2011, 84: 024521

    Google Scholar 

  33. Wu G, Xie YL, Chen H, et al. Superconductivity at 56 K in samarium-doped SrFeAsF. J Phys Condens Mat, 2009, 21: 142203

    Google Scholar 

  34. Zhu XY, Han F, Mu G, et al. Sr3Sc2Fe2As2O5 as a possible parent compound for FeAs-based superconductors. Phys Rev B, 2009, 79: 024516

    Google Scholar 

  35. Ogino H, Sato S, Kishio K, et al. Homologous series of iron pnictide oxide superconductors with extremely thick blocking layers. Appl Phys Lett, 2010, 97: 072506

    Google Scholar 

  36. Ogino H, Shimizu Y, Ushiyama K, et al. Superconductivity above 40 K observed in a new iron arsenide oxide (Fe2As2)(Ca4(Mg,Ti)3Oy). Appl Phys Express, 2010, 3: 063103

    Google Scholar 

  37. Xie YL, Liu RH, Wu T, et al. Structure and physical properties of the new layered oxypnictides Sr4Sc 2O6 M 2As2 (M = Fe and Co). EPL, 2009, 86: 57007

    Google Scholar 

  38. Ogino H, Machida K, Yamamoto A, et al. A new homologous series of iron pnictide oxide superconductors (Fe2As2)(Ca n+2(Al, Ti)nOy) (n = 2, 3, 4). Supercond Sci Technol, 2010, 23: 115005

    Google Scholar 

  39. Kakiya S, Kudo K, Nishikubo Y, et al. Superconductivity at 38 K in (Fe1–x PtxAs2)5. J Phys Soc Jpn, 2011, 80: 093704

    Google Scholar 

  40. Ni N, Jared MA, Chan BC, et al. High Tc electron doped Ca10(Pt3 As8)(Fe2As2)5 and Ca10(Pt4As8)(Fe2As2)5 superconductors with skutterudite intermediary layers. Proc Natl Acad Sci USA, 2011, 108: E1019–1026

    Google Scholar 

  41. Lu XF, Wang NZ, Zhang GH, et al. Superconductivity in LiFeO2 Fe2Se2 with anti-PbO-type spacer layers. Phys Rev B, 2013, 89: 020507 (R)

    Google Scholar 

  42. Lu XF, Wang NZ, Wu H, et al. Coexistence of superconductivity and antiferromagnetism in (Li0.8Fe0.2)OHFeSe superconductor. Nat Mater, Doi: 10.1038/nmat4155

  43. Sun H, Woodruff DN, Cassidy SJ, et al. Controlling parameters for superconductivity in layered lithium iron hydroxide selenides. arXiv:1408.4350

  44. Sun YL, Jiang H, Zhai HF, et al. Ba2Ti2Fe2As4O: a new superconductor containing Fe2As2 layers and Ti2O sheets. J Am Chem Soc, 2012, 134: 12893–12896

    Google Scholar 

  45. Chen XH, Dai PC, Feng DL, et al. Iron-based high transition temperature superconductors. Natl Sci Rev, 2014, 1: 371–395

    Google Scholar 

  46. Johnson PD, Xu GY, and Yin WG (eds.). Iron-Based Superconductivity (Springer Series in Materials Science), Berlin: Springer, Vol. 211, 2014

    Google Scholar 

  47. Lee CH, Kihou K, Iyo A, et al. Relationship between crystal structure and superconductivity in iron-based superconductors. Solid State Commun, 2012, 152: 644–648

    Google Scholar 

  48. Mizuguchi Y, Hara Y, Deguchi K, et al. Anion height dependence of T c for the Fe-based superconductor. Supercond Sci Technol, 2010, 23: 054013

    Google Scholar 

  49. McQueen TM, Huang, Q, Ksenofontov V, et al. Extreme sensitivity of superconductivity to stoichiometry in Fe1+δ Se. Phys Rev B, 2009, 79: 014522.

    Google Scholar 

  50. Iimura S, Satuishi S, Sato H, et al. Two-dome structure in electron-doped iron arsenide superconductors. Nat Commun, 2012, 3: 943

    Google Scholar 

  51. Drew AJ, Niedermayer C, Baker PJ, et al. Coexistence of static magnetism and superconductivity in SmFeAsO1−x Fx as revealed by muon spin rotation. Nat Mater, 2009, 8: 310–314

    Google Scholar 

  52. Zhao J, Huang Q, Cruz C, et al. Structural and magnetic phase diagram of CeFeAsO1−x Fx and its relation to high-temperature superconductivity. Nat Mater, 2008, 7: 953–959

    Google Scholar 

  53. Chen H, Ren Y, Bao W, et al. Coexistence of the spin-density wave and superconductivity in Ba1−x KxFe2As2. EPL, 2009, 85: 17006

    Google Scholar 

  54. Nandi S, Kim MG, Kreyssig A, et al. Anomalous suppression of the orthorhombic distortion in superconducting Ba(Fe1−x Cox)2As2. Phys Rev Lett, 2010, 104: 057006

    Google Scholar 

  55. Kasahara S, Shi HJ, Hashimoto K, et al. Electronic nematicity above the structural and superconducting transition in BaFe2(As1−x Px)2. Nature, 2012, 486: 382–385

    Google Scholar 

  56. Wang AF, Ying JJ, Wang AF, et al. A crossover in the phase diagram of NaFe1−x CoxAs determined by electronic transport measurements. New J Phys, 2013, 15: 043048

    Google Scholar 

  57. Ye ZR, Zhang Y, Chen F, et al. Extraordinary doping effects on quasiparticle scattering and bandwidth in iron-based superconductors. Phys Rev X, 2014, 4: 031041

    Google Scholar 

  58. Mizuguchi Y, Takano Y. Review of Fe chalcogenides as the simplest Fe-based superconductor. J Phys Soc Jpn, 2010, 79: 102001

    Google Scholar 

  59. Dong J, Zhang HJ, Xu G, et al. Competing orders and spin-density-wave instability in La(O1−x Fx)FeAs. EPL, 2008, 83: 27006

    Google Scholar 

  60. Lumsden MD, Christianson AD. Magnetism in Fe-based superconductors. J Phys Condens Matt, 2010, 22: 203203

    Google Scholar 

  61. De la Cruz C, Huang Q, Lynn JW et al. Magnetic order close to superconductivity in the iron-based layered LaO1−x FxFeAs systems. Nature, 2008, 453: 899–902

    Google Scholar 

  62. Lee PA, Nagaosa N, Wen XG. Doping a Mott insulator: physics of high-temperature superconductivity. Rev Mod Phys, 2006, 78: 17–85

    Google Scholar 

  63. Richard P, Sato T, Nakayama K et al. Fe-based superconductors: an angle-resolved photoemission spectroscopy perspective. Rep Prog Phys, 2011, 74: 124512

    Google Scholar 

  64. Mazin II, Singh DJ, Johannes MD, et al. Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1−x Fx. Phys Rev Lett, 2008, 101: 057003

    Google Scholar 

  65. Kuroki K, Onari S, Arita R, et al. Unconventional pairing originating from the disconnected Fermi surfaces of superconducting La-FeAsO1−x Fx. Phys Rev Lett, 2008, 101: 087004

    Google Scholar 

  66. Wang F, Lee DH. Functional renormalization-group study of the pairing symmetry and pairing mechanism of the FeAs-based high-temperature superconductor. Phys Rev Lett, 2009, 102: 047005

    Google Scholar 

  67. Yao ZJ, Li JX, Wang ZD. Spin fluctuations, interband coupling and unconventional pairing in iron-based superconductors. New J Phys, 2009, 11: 025009

    Google Scholar 

  68. Dai PC, Hu J, Dagotto E. Magnetism and its microscopic origin in iron-based high-temperature superconductors. Nat Phys, 2012, 8: 709–718

    Google Scholar 

  69. Zhao J, Ratcliff W, II, et al. Spin and lattice structures of single-crystalline SrFe2As2. Phys Rev B, 2008, 78: 140504 (R)

    Google Scholar 

  70. Li SL, de la Cruz C, Huang Q, et al. First-order magnetic and structural phase transitions in Fe1+y SexTe1−x . Phys Rev B, 2009, 79: 054503

    Google Scholar 

  71. Bao W, Qiu Y, Huang Q, et al. Tunable (δπ, δπ)-type antiferromagnetic order in α-Fe(Te, Se) superconductors. Phys Rev Lett, 2009, 102: 247001

    Google Scholar 

  72. Bao W, Huang Q, Chen GF, et al. A novel large moment antiferromagnetic order in K0.8Fe1.6Se2 superconductor. Chin Phys Lett, 2011, 28: 086104

    Google Scholar 

  73. Liu RH, Wu G, Wu T, et al. Anomalous transport properties and phase diagram of the FeAs-based SmFeAsO1−x Fx superconductors. Phys Rev Lett, 2008, 101: 087001

    Google Scholar 

  74. Yan YJ, Wang AF, Luo XG, et al. Power-law temperature dependent hall angle in the normal state and its correlation with superconductivity in iron-pnictides. arXiv: 1301.1734

  75. Fang C, Yao H, Tsai WF, et al. Theory of electron nematic order in LaFeAsO. Phys Rev B, 2008, 77: 224509

    Google Scholar 

  76. Yildirim T. Strong coupling of the Fe-spin state and the As-As hybridization in iron-pnictide superconductors from first-principle calculations. Phys Rev Lett, 2009, 102: 037003

    Google Scholar 

  77. Xu C, Muller M, Sachdev S. Ising and spin orders in the iron-based superconductors. Phys Rev B, 2008, 78: 020501

    Google Scholar 

  78. Johannes M, Mazin II. Microscopic origin of magnetism and magnetic interactions in ferropnictides. Phys Rev B, 2009, 79: 220510

    Google Scholar 

  79. Wang QY, Li Z, Zhang WH, et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3. Chin Phys Lett, 2012, 29: 037402

    Google Scholar 

  80. Liu DF, Zhang WH, Mou WX, et al. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor. Nat Commun, 2012, 3: 931

    Google Scholar 

  81. He SL, He JF, Zhang WH, et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nat Mater, 2013, 12: 605–610

    Google Scholar 

  82. Tan SY, Zhang Y, Xia M, et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. Nat Mater, 2013, 12: 634–640

    Google Scholar 

  83. Ge JF, Liu ZL, Liu CH, et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nat Mater, DOI:10.1038/nmat4153

  84. Luetkens H, Klauss HH, Kraken M, et al. The electronic phase diagram of the LaO1−x FxFeAs superconductor. Nat Mater, 2009, 8: 305–309

    Google Scholar 

  85. Rotundu CR, Keane DT, Freelon B, et al. Phase diagram of the Pr-FeAsO1−x F x superconductor. Phys Rev B, 2009, 80: 144517

    Google Scholar 

  86. Malavasi L, Artioli GA, Ritter C, et al. Phase diagram of NdFeAsO1−x Fx: essential role of chemical. J Am Chem Soc, 2010, 132: 2417–2420

    Google Scholar 

  87. Fukazawa H, Yamazaki T, Kondo K, et al. 75As NMR study of holedoped superconductor Ba1−x KxFe2As2 (Tc similar or equal to 38 K). J Phys Soc Jpn, 2009, 78: 033704

    Google Scholar 

  88. Park JT, Inosov DS, Niedermayer C, et al. Electronic phase separation in the slightly underdoped iron pnictide superconductor Ba1−x KxFe2As2. Phys Rev Lett, 2009, 102: 117006

    Google Scholar 

  89. Rotter M, Tegel M, Schellenberg I, et al, Competition of magnetism and superconductivity in underdoped (Ba1−x K x )Fe2As2. New J Phys, 2009, 11: 025014

    Google Scholar 

  90. Li Z, Zhou R, Liu Y, et al. Microscopic coexistence of antiferromagnetic order and superconductivity in Ba0.77K0.23Fe2As2. Phys Rev B, 2012, 86: 180501 (R)

    Google Scholar 

  91. Laplace Y, Bobroff J, Rullier-Albenque F, et al. Atomic coexistence of superconductivity and incommensurate magnetic order in the pnictide Ba(Fe1−x Cox)2As2. Phys Rev B, 2009, 80: 140501

    Google Scholar 

  92. Bernhard C, Drew AJ, Schulz L, et al. Muon spin rotation study of magnetism and superconductivity in BaFe2−x CoxAs2 and Pr1−x Srx- FeAsO. New J Phys, 2009, 11: 055050

    Google Scholar 

  93. Ma L, Ji GF, Dai J, et al. Microscopic coexistence of superconductivity and antiferromagnetism in underdoped Ba(Fe1−x Rux)2As2. Phys Rev Lett, 2012, 109: 197002

    Google Scholar 

  94. Pratt DK, Tian W, Kreyssig A, et al. Coexistence of competing antiferromagnetic and superconducting phases in the underdoped Ba(Fe0.953Co0.047)2As2 compound using X-ray and neutron scattering techniques. Phys Rev Lett, 2009, 103: 087001.

    Google Scholar 

  95. Christianson AD, Lumsden MD, Nagler SE, et al. Static and dynamic magnetism in underdoped superconductor BaFe1.92Co0.08As2. Phys Rev Lett, 2009, 103: 087002

    Google Scholar 

  96. Jiang S, Xing H, Xuan GF, et al. Superconductivity up to 30 K in the vicinity of the quantum critical point in BaFe2(As1−x Px)2. J Phys Condens matter, 2009, 21: 382203

    Google Scholar 

  97. Kasahara S, Shibauchi T, Hashimoto K, et al. Evolution from non-Fermi-to Fermi-liquid transport via isovalent doping in BaFe2(As1−x Px)2 superconductors. Phys Rev B, 2010, 81: 184519

    Google Scholar 

  98. Lohneysen HV, Rosch A, Vojta M, et al. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev Mod Phys, 2007, 79: 1015

    Google Scholar 

  99. Fisher IR, Degiorgi L, Shen ZX, et al. In-plane electronic anisotropy of underdoped ‘122’ Fe-arsenide superconductors revealed by measurements of detwinned single crystals. Rep Prog Phys, 2011, 74: 124506

    Google Scholar 

  100. Chu JH, Analytis JG, De Greve K, et al. In-plane resistivity anisotropy in an underdoped iron arsenide superconductor. Science, 2010, 329: 824–826

    Google Scholar 

  101. Ying JJ, Wang XF, Wu T, et al. Measurements of the anisotropic inplane resistivity of underdoped FeAs-based pnictide superconductors. Phys Rev Lett, 2011, 107: 067001

    Google Scholar 

  102. Ishida S, Nakajima M, Liang T, et al. Effect of doping on the magnetostructural ordered phase of iron arsenides: a comparative study of the resistivity anisotropy in doped BaFe2As2 with doping into three different sites. J Am Chem Soc, 2013, 135: 3158–3163

    Google Scholar 

  103. Blomberg EC, Tanatar MA, Fernandes RM, et al. Sign-reversal of the in-plane resistivity anisotropy in hole-doped iron pnictides. Nat Commun, 2013, 4: 1914

    Google Scholar 

  104. Ma JQ, Luo XG, Cheng P, et al. Evolution of anisotropic in-plane resistivity with doping level in Ca1−x NaxFe2As2 single crystals. Phys Rev B, 2014, 89: 174512

    Google Scholar 

  105. Ishida S, Nakajima M, Liang T, et al Anisotropy of the in-plane resistivity of underdoped Ba(Fe1−x Cox)2As2 superconductors induced by impurity scattering in the antiferromagnetic orthorhombic phase. Phys Rev Lett, 2013, 110: 207001

    Google Scholar 

  106. Allan MP, Chuang TM, Masseeet F, et al. Anisotropic impurity states, quasiparticle scattering and nematic transport inunderdoped Ca(Fe1−x Cox)As2. Nat Phys, 2013, 9: 220–224

    Google Scholar 

  107. Zhang, LJ, Singh DJ, Du MH, et al. Density functional study of FeS, FeSe, and FeTe: electronic structure, magnetism, phonons, and superconductivity. Phys Rev B, 2008, 78: 134514

    Google Scholar 

  108. Xia Y, Qian D, Wray L, et al. Fermi surface topology and low-lying quasiparticle dynamics of parent Fe1−x Te/Se superconductor. Phys Rev Lett, 2009, 103: 037002

    Google Scholar 

  109. Liu TJ, Ke X, Qian B, et al. Charge-carrier localization induced by excess Fe in the superconductor Fe1+y Te1−x Sex. Phys Rev B, 2009, 80: 174509

    Google Scholar 

  110. Paulose PL, Yadav CS, Subhedar KM, Magnetic phase diagram of Fe1.1Te1−x Sex: a comparative study with the stoichiometric superconducting FeTe1−x Sex system. EPL, 2010, 90: 27011

    Google Scholar 

  111. Margadonna S, Takabayashi Y, McDonald MT, et al. Crystal structure of the new FeSe1−x superconductor. Chem Commun, 2008: 5607–5609

    Google Scholar 

  112. Stewart GR. Superconductivity in iron compounds. Rev Mod Phys, 2011, 83: 1589

    Google Scholar 

  113. Takahashi H, Okada H, Kamihara Y, et al. Pressure effect of superconducting oxypnictide LaFeAO1−x Fx and related materials. J Phys Conf Ser, 2010, 215: 012037

    Google Scholar 

  114. Colombier E, Torikachvili MS, Ni N, et al. Electrical transport measurements under pressure for BaFe2As2 compounds doped with Co, Cr, or Sn. Supercond Sci Technol, 2010, 23: 054003

    Google Scholar 

  115. Zhang SJ, Wang XC, Liu QQ, et al. Superconductivity at 31 K in the “111”-type iron arsenide superconductor Na1-xFeAs induced by pressure. EPL, 2009, 88: 47008

    Google Scholar 

  116. Wang AF, Xiang ZJ, Ying JJ, et al. Pressure effects on the superconducting properties of single-crystalline Co doped NaFeAs. New J Phys, 2012, 14: 113043

    Google Scholar 

  117. Alireza PL, Chris Ko YT, Gillett J, et al. Superconductivity up to 29 K in SrFe2As2 and BaFe2As2 at high pressures. J Phy Condens Matter, 2009, 21: 012208

    Google Scholar 

  118. Miclea CF, Nicklas M, Jeevan HS, et al. Evidence for a reentrant superconducting state in EuFe2As2 under pressure. Phys Rev B, 2009, 79: 212509

    Google Scholar 

  119. Ahilan K, Ning FL, Imai T, et al. Electronic phase diagram of the iron-based high-T c superconductor Ba(Fe1−x Cox)2As2 under hydrostatic pressure (0 ⩽ x ⩽ 0.099). Phys Rev B, 2009, 79: 214520

    Google Scholar 

  120. Zhang M, Ying JJ, Yan YJ, et al. Phase diagram as a function of doping level and pressure in Eu1−x LaxFe2As2 system. Phys Rev B, 2012, 85: 092503

    Google Scholar 

  121. Lu XF, Wang NZ, Chen XH, et al. Superconductivity and phase diagram in (Li0.8Fe0.2)OHFeSe1−x Sx. Phys Rev B, 2014, 90: 214520

    Google Scholar 

  122. Ying JJ, Wang XF, Luo XG, et al. Pressure effect on superconductivity of AxFe2Se2 (A = K and Cs). New J Phys, 2011, 13: 033008

    Google Scholar 

  123. Sun LL, Chen XJ, Guo J, et al. Re-emerging superconductivity at 48 kelvin in iron chalcogenides. Nature, 2012, 483: 67–69

    Google Scholar 

  124. Guo J, Chen XJ, Dai JH, et al. Pressure-driven quantum criticality in iron-selenide superconductors. Phys Rev Lett, 2012, 108: 197001

    Google Scholar 

  125. Lai KT, Takemori A, Miyasaka S, et al. Suppression of superconductivity around x = 0.5–0.7 in LaFe1−x AsxO0.95F0.05. JPS Conf Proc, 2014, 1: 012104

    Google Scholar 

  126. Okabe H, Takeshita N, Horigane K, Muranaka T, Akimitsu J. Pressure-induced high-T c superconducting phase in FeSe: correlation between anion height and T c. Phys Rev B, 2010, 81: 205119

    Google Scholar 

  127. Lee CH, Iyo A, Eisaki H, et al. Effect of structural parameters on superconductivity in fluorine-free LnFeAsO1–y (Ln = La, Nd). J Phys Soc Jpn, 2008, 77: 083704

    Google Scholar 

  128. Kumai R, Takeshita N, Ito T, et al. Pressure-induced modification of crystal structure in NdFeAsO1–y (1−y = 0.85), accompanied by remarkable suppression of T c. J Phys Soc Jpn, 2009, 78: 013705

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianhui Chen.

Additional information

Xigang Luo is an associate Professor in Physics at the University of Science and Technology of China (USTC). He received his PhD degree from USTC in 2005. His research is focused on the study of the physics of novel functional materials, such as unconventional superconductors, thermoelectric oxides.

Xianhui Chen obtained his PhD in physics from the University of Science and Technology of China (USTC) in 1992. In the same year, he began his research career in USTC and now holds the position of Professor in Physics. His research is focused on the exploration and study of the physics of novel functional materials exhibiting superconductivity, novel magnetism, thermoelectricity, etc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Chen, X. Crystal structure and phase diagrams of iron-based superconductors. Sci. China Mater. 58, 77–89 (2015). https://doi.org/10.1007/s40843-015-0022-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-015-0022-9

Keywords

Navigation