Skip to main content
Log in

ZnO nanostructures in enzyme biosensors

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Biosensing has developed tremendously since it was demonstrated by Leland C. Clark Jr. in 1962. ZnO nanomaterials are attractive candidates for fabricating biosensors, because of their diverse range of nanostructures, high electron mobility, chemical stability, electrochemical activity, high isoelectric points which promote enzyme adsorption, biocompatibility, and piezoelectric properties. This review covers ZnO nanostructures applied in enzyme biosensors, in the light of electrochemical transduction and field effect transduction. Different assembly processes and immobilization methods have been used to load enzymes into various ZnO nanostructures, providing enzymes with favorable micro-environments and enhancing their sensing performance. We briefly describe recent trends in ZnO syntheses, and the analytical performance of the fabricated biosensors, summarize the advantages of using ZnO nanostructures in biosensors, and conclude with future challenges and prospects.

中文摘要

自从Liland C. Clark Jr. 于1962年首次发明生物传感器以来, 生物传感技术得到了突飞猛进的发展. 目前, 氧化锌纳米材料被视为极有前景的生物传感器构建材料之一, 其具有多样化的纳米结构、 高电子迁移率、 化学稳定性、 电化学活性、 高等电点、 生物相容性、压电特性等一系列出众 的优异性能. 本综述从电化学器件以及场效应器件两个角度介绍了氧化锌纳米材料在酶基生物传感器领域的应用. 通过不同的合成工艺而获得的氧化锌纳米结构被用于酶分子的装载与固定, 并同时为酶提供一个良好的微环境, 从而有效提升了生物传感性能. 本文综述了氧化锌纳米材料合成工艺的最新进展, 针对不同的氧化锌纳米结构对传感器的性能进行了对比,并总结了氧化锌纳米材料在生物传感器构建中的主要优势, 以及未来的发展前景和挑战.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turner APF. Biosensors: sense and sensibility. Chem Soc Rev, 2013, 42: 3184–3196

    Article  Google Scholar 

  2. Dzyadevych SV, Arkhypova VN, Soldatkin AP, et al. Amperometric enzyme biosensors: past, present and future. IRBM, 2008, 29: 171–180

    Article  Google Scholar 

  3. Zhao Z, Lei W, Zhang X, et al. ZnO-based amperometric enzyme biosensors. Sensors, 2010, 10: 1216–1231

    Article  Google Scholar 

  4. Ariga K, Ji Q, Mori T, et al. Enzyme nanoarchitectonics: organiza tion and device application. Chem Soc Rev, 2013, 42: 6322–6345

    Article  Google Scholar 

  5. Ravindra NM, Prodan C, Fnu S, et al. Advances in the manufacturing, types, and applications of biosensors. JOM, 2007, 59: 37–43

    Article  Google Scholar 

  6. Zhou J, Xu NS, Wang ZL. Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. Adv Mater, 2006, 18: 243 2–2435

    Article  Google Scholar 

  7. Li Z, Yang R, Yu M, et al. Cellular level biocompatibility and biosafety of ZnO nanowires. J Phys Chem C, 2008, 112: 20114–20117

    Article  Google Scholar 

  8. Topoglidis E, Palomares E, Astuti Y, et al. Immobilization and electrochemistry of negatively charged proteins on modified nanocrystalline metal oxide electrodes. Electroanalysis, 2005, 17: 10 35–1041

    Article  Google Scholar 

  9. Wang J, Sun XW, Wei A, et al. Zinc oxide nanocomb biosensor for glucose detection. Appl Phys Lett, 2006, 88: 233106

    Article  Google Scholar 

  10. Zhao Y, Yan X, Kang Z, et al. Highly sensitive uric acid biosensor based on individual zinc oxide micro/nanowires. Microchim Acta, 2013, 180: 759–766

    Article  Google Scholar 

  11. Liu J, Guo C, Li CM, et al. Carbon-decorated ZnO nanowire array: a novel platform for direct electrochemistry of enzymes and biosensing applications. Electrochem Commun, 2009, 11: 202–205

    Article  Google Scholar 

  12. Dai Z, Shao G, Hong J, et al. Immobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor. Biosens Bioelectron, 2009, 24: 1 286–1291

    Article  Google Scholar 

  13. Kavitha T, Gopalan AI, Lee KP, Park SY. Glucose sensing, photocatalytic and antibacterial properties of graphene-ZnO nanoparticle hybrids. Carbon, 2012, 50: 2994–3000

    Article  Google Scholar 

  14. Jafari M, Khodadadi AA, Mortazavi Y, Ghorchian H. Deposition of ZnO nanopraticles on MWCNTs for glucose oxidase direct electrochemistry. IMCS 2012-The 14th International Meeting on Chemical Sensors, 2012, 687–689

    Google Scholar 

  15. Weiss RG, Chacko V, Glickson JD, Gerstenblith G. Comparative 13C and 31P NMR assessment of altered metabolism during graded reductions in coronary flow in intact rat hearts. Proc Natl Acad Sci USA, 1989, 86: 6426–6430

    Article  Google Scholar 

  16. Hellman B, Idahl LÅ, Lernmark Å, Täljedal IB. The pancreatic β-cell recognition of insulin secretagogues: does cyclic AMP mediate the effect of glucose? Proc Natl Acad Sci USA, 1974, 71: 3405–3409

    Article  Google Scholar 

  17. Zawalich WS, Matschinsky FM. Sequential analysis of the releasing and fuel function of glucose in isolated perifused pancreatic islets. Endocrinology, 1977, 100: 1–8

    Article  Google Scholar 

  18. Sweet I, Li G, Najafi H, et al. Effect of a glucokinase inhibitor on energy production and insulin release in pancreatic islets. Am J Physiol Endoc M, 1996, 2 71: 606–625

    Google Scholar 

  19. Guillam MT, Dupraz P, Thorens B. Glucose uptake, utilization, and signaling in GLUT2-null islets. Diabetes, 2000, 4 9: 1485–1491

    Article  Google Scholar 

  20. Passonneau JV, Lowry OH. Enzymatic Analysis: A Practical Guide. Totowa: Humana P ress, 1993

    Google Scholar 

  21. Moley KH, Chi MM-Y, Mueckler MM. Maternal hyperglycemia alters glucose transport and utilization in mouse preimplantation embryos. Am J Physiol Endoc M, 1998, 275: 38–47

    Google Scholar 

  22. Ronkainen NJ, Halsall HB, Heineman WR. Electrochemical biosensors. Chem Soc Rev, 2010, 39: 1747–1763

    Article  Google Scholar 

  23. Liu CC. Electrochemical based biosensors. Biosensors, 2012, 2: 269–272

    Article  Google Scholar 

  24. Arya SK, Saha S, Ramirez-Vick JE, et al. Recent advances in ZnO nanostructures and thin films for biosensor applications: review. Anal Chim Acta, 2012, 737: 1–21

    Article  Google Scholar 

  25. Topoglidis E, Cass AE, O’Regan B, Durrant JR. Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films. J Electroanal Chem, 2001, 517: 20–27

    Article  Google Scholar 

  26. Lei Y, Yan X, Luo N, et al. ZnO nanotetrapod network as the adsorption layer for the improvement of glucose detection via multiterminal electron-exchange. Colloids Surf A, 2010, 361: 169–173

    Article  Google Scholar 

  27. Aydogdu G, Zeybek DK, Pekyardimci Ş, Kiliç E. A novel amperometric biosensor based on ZnO nanoparticles-modified carbon paste electrode for determination of glucose in human serum. Artif Cells Nanomed Biotechnol, 2013, 41: 332–338

    Article  Google Scholar 

  28. Ahmad M, Pan C, Luo Z, Zhu J. A single ZnO nanofiber-based highly sensitive amperometric glucose biosensor. J Phys Chem C, 2010, 114: 9308–9313

    Article  Google Scholar 

  29. Ren X, Chen D, Meng X, et al. Zinc oxide nanoparticles/glucose oxidase photoelectrochemical system for the fabrication of biosensor. J Colloid Interface Sci, 2009, 334: 183–187

    Article  Google Scholar 

  30. Wei A, Sun XW, Wang J, et al. Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition. Appl Phys Lett, 2006, 89: 123902

    Article  Google Scholar 

  31. Liu X, Hu Q, Wu Q, et al. Aligned ZnO nanorods: a useful film to fabricate amperometric glucose biosensor. Colloids Surf B, 2009, 74: 154–158

    Article  Google Scholar 

  32. Ahmad R, Tripathy N, Kim JH, Hahn YB. Highly selective wide linear-range detecting glucose biosensors based on aspect-ratio controlled ZnO nanorods directly grown on electrodes. Sens Actuators B, 2012, 174: 195–201

    Article  Google Scholar 

  33. Kim JY, Jo SY, Sun GJ, et al. Tailoring the surface area of ZnO nanorods for improved performance in glucose sensors. Sens Actuators B, 2014, 192: 216–220

    Article  Google Scholar 

  34. Pradhan D, Niroui F, Leung K. High-performance, flexible enzymatic glucose biosensor based on ZnO nanowires supported on a gold-coated polyester substrate. ACS Appl Mater Interfaces, 2010, 2: 2409–2412

    Article  Google Scholar 

  35. Lei Y, Yan X, Zhao J, et al. Improved glucose electrochemical biosensor by appropriate immobilization of nano-ZnO. Colloids Surf B, 2011, 82: 168–172

    Article  Google Scholar 

  36. Jung J, Lim S. ZnO nanowire-based glucose biosensors with different coupling agents. Appl Surf Sci, 2013, 265: 24–29

    Article  Google Scholar 

  37. Yang K, She GW, Wang H, et al. ZnO nanotube arrays as biosensors for glucose. J Phys Chem C, 2009, 113: 20169–20172

    Article  Google Scholar 

  38. Kong T, Chen Y, Ye Y, et al. An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes. Sens Actuators B, 2009, 138: 344–350

    Article  Google Scholar 

  39. Ali SMU, Kashif M, Ibupoto ZH, et al. Functionalised zinc oxide nanotube arrays as electrochemical sensors for the selective determination of glucose. Micro Nano Let t, 2011, 6: 609–613

    Article  Google Scholar 

  40. Fulati A, Ali SMU, Asif MH, et al. An intracellular glucose biosensor based on nanoflake ZnO. Sens Actuators B, 2010, 150: 673–680

    Article  Google Scholar 

  41. Asif MH, Ali SMU, Nur O, et al. Functionalised ZnO-nanorodbased selective electrochemical sensor for intracellular glucose. Biosens Bioelectron, 2010, 25: 2205–2211

    Article  Google Scholar 

  42. Fatemi H, Khodadadi AA, Firooz AA, Mortazavi Y. Apple-biomorphic synthesis of porous ZnO nanostructures for glucose direct electrochemical biosensor. Curr Appl Phys, 2012, 12: 1033–1038

    Article  Google Scholar 

  43. Zhao M, Li Z, Han Z, et al. Synthesis of mesoporous multiwall ZnO nanotubes by replicating silk and application for enzymatic biosensor. Biosens Bioelectr on, 2013, 49: 318–322

    Article  Google Scholar 

  44. Belcher AM, Wu X, Christensen R, et al. Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Natu re, 1996, 381: 56–58

    Article  Google Scholar 

  45. Cha JN, Stucky GD, Morse DE, Deming TJ. Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Natu re, 2000, 403: 289–292

    Article  Google Scholar 

  46. Nuraje N, Su K, Haboosheh A, et al. Room temperature synthesis of ferroelectric barium titanate nanoparticles using peptide nanorings as templates. Adv Ma ter, 2006, 18: 807–811

    Article  Google Scholar 

  47. Zhao M, Huang J, Zhou Y, et al. A single mesoporous ZnO/Chitosan hybrid nanostructure for a novel free nanoprobe type biosensor. Biosens Bioelect ron, 2013, 43: 226–230

    Article  Google Scholar 

  48. Yang C, Xu C, Wang X. ZnO/Cu nanocomposite: a platform for direct electrochemistry of enzymes and biosensing applications. Langmu ir, 2012, 28: 4580–4585

    Article  Google Scholar 

  49. Wang Y, Yu L, Wang J, et al. A novel L-lactate sensor based on en zyme electrode modified with ZnO nanoparticles and multiwall carbon nanotubes. J Electroan al Chem, 2011, 661: 8–12

    Article  Google Scholar 

  50. Giri AK, Sinhamahapatra A, Prakash S, et al. Porous ZnO microtubes with excellent cholesterol sensing and catalytic properties. J Mater Chem A, 2013, 1: 814–822

    Article  Google Scholar 

  51. Liu YL, Yang YH, Yang HF, et al. Nanosized flower-like ZnO synthesized by a simple hydrothermal method and applied as matrix for horseradish peroxidase immobilization for electro-biosensing. J Inorg Bio chem, 2005, 99: 2046–2053

    Article  Google Scholar 

  52. Yang Z, Zong X, Ye Z, et al. The application of complex multiple forklike ZnO nanostructures to rapid and ultrahigh sensitive hydrogen peroxide biosensors. Biomate rials, 2010, 31: 7534–7541

    Article  Google Scholar 

  53. Liu H, Zuo Z, Guo Y, et al. Supramolecular interactions at the inorganic-organic interface in hybrid nanomaterials. Angew Chem In t Ed, 2010, 122: 2705–2707

    Article  Google Scholar 

  54. Shukla S, Deshpande SR, Shukla SK, Tiwari A. Fabrication of a tunable glucose biosensor based on zinc oxide/chitosan-graft-poly(vinyl alcohol) core-shell nanocomposite. Talanta, 2012, 99: 283–287

    Article  Google Scholar 

  55. Yeom SH, Kang BH, Kim KJ, Kang SW. Nanostructures in biosensor-a review. Front Biosci Land mark ed, 2010, 16: 997–1023

    Article  Google Scholar 

  56. Lee SH, Sung JH, Park TH. Nanomaterial-based biosensor as an emerging tool for biomedical applications. Ann Bio med Eng, 2012, 40: 1384–1397

    Article  Google Scholar 

  57. Zhang L, Wang Y, Wang J, et al. rhEPO/EPO discrimination with ultrasensitive electrochemical biosensor based on sandwich-type nano-Au/ZnO sol-gel/nano-Au signal amplification. Biosens Bi oelectron, 2013, 50: 217–223

    Article  Google Scholar 

  58. Wei Y, Li Y, Liu X, et al. ZnO nanorods/Au hybrid nanocomposites for glucose biosensor. Biosens B ioelectron, 2010, 26: 275–278

    Article  Google Scholar 

  59. Bhattacharya A, Jain C, Rao VP, Banerjee S. Gold coated ZnO nanorod biosensor for glucose detection. AIP C onf Proc, 2012, 1447: 295–296

    Article  Google Scholar 

  60. Zhang J, Wang C, Chen S, et al. Amperometric glucose biosensor based on glucose oxidase-lectin biospecific interaction. Enzyme Mic rob Technol, 2013, 52: 134–140

    Article  Google Scholar 

  61. Huh P, Kim M, Kim SC. Glucose sensor using periodic nanostructured hybrid 1D Au/ZnO arrays. Mater Sci Eng C, 2012, 32: 1288–1292

    Article  Google Scholar 

  62. Chu X, Zhu X, Dong Y, et al. An amperometric glucose biosensor based on the immobilization of glucose oxidase on the platinum electrode modified with NiO doped ZnO nanorods. J Ele ctroanal Chem, 2012, 676: 20–26

    Article  Google Scholar 

  63. Zhao Z, Chen X, Tay B, et al. A novel amperometric biosensor based on ZnO: Co nanoclusters for biosensing glucose. Biosen s Bioelectron, 2007, 23: 135–139

    Article  Google Scholar 

  64. Yang W, Ratinac KR, Ringer SP, et al. Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed, 2010, 49: 2114–2138

    Article  Google Scholar 

  65. Liu Y, Dong X, Chen P. Biological and chemical sensors based on graphene materials. Chem Soc Rev, 2012, 41: 2283–2307

    Article  Google Scholar 

  66. Hahn Y-B, Ahmad R, Tripathy N. Chemical and biological sensors based on metal oxide nanostructures. C hem Commun, 2012, 48: 10369–10385

    Article  Google Scholar 

  67. Chen W, Cai S, Ren QQ, et al. Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst, 2012, 137: 49–58

    Article  Google Scholar 

  68. Walcarius A, Minteer SD, Wang J, et al. Nanomaterials for bio-functionalized electrodes: recent trends. J Mater Chem B. 2013, 1: 4878–4908

    Article  Google Scholar 

  69. Wang G, Tan X, Zhou Q, et al. Synthesis of highly dispersed zinc oxide nanoparticles on carboxylic graphene for development a sensitive acetylcholinesterase biosensor. Sens Actuators B, 2014, 190: 730–736

    Article  Google Scholar 

  70. Yue HY, Huang S, Chang J, et al. ZnO Nanowire arrays on 3D-hierarchical graphene foam: biomarker detection of Parkinson’s d isease. ACS Nano, 2014, 8: 1639–1646

    Article  Google Scholar 

  71. Tak M, Gupta V, Tomar M. Zinc oxide-multiwalled carbon nanotubes hybrid nanocomposite based urea biosensor. J Mater Chem B, 2013, 1: 6392–6401

    Article  Google Scholar 

  72. Hu F, Chen S, Wang C, et al. ZnO nanoparticle and multiwalled carbon nanotubes for glucose oxidase direct electron transfer and electrocatalytic activity investigation. J Mol Catal B Enzym, 2011, 72: 298–3 04

    Article  Google Scholar 

  73. Wang YT, Yu L, Zhu ZQ, et al. Improved enzyme immobilization for enhanced bioelectrocatalytic activity of glucose sensor. Sens Actuators B, 2009, 136: 332–337

    Article  Google Scholar 

  74. Palanisamy S, Cheemalapati S, Chen SM. Enzymatic glucose biosensor based on multiwalled carbon nanotubes-zinc oxide composite. Int J Electrochem Sci, 2012, 7: 8394–8407

    Google Scholar 

  75. Palanisamy S, Vilian A, Chen SM. Direct electrochemistry of glucose oxidase at reduced graphene oxide/zinc oxide composite modified electrode for glucose sensor. Int J Electrochem Sci, 2012, 7: 2153–2163

    Google Scholar 

  76. Dey RS, Raj CR. A hybrid functional nanoscaffold based on reduced graphene oxide-ZnO for the development of an amperometric biosensing p latform. RSC Adv., 2013, 3: 25858–25864

    Article  Google Scholar 

  77. Zhang F, Wang X, Ai S, et al. Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosen sor. Anal Chim Acta, 2004, 519: 155–160

    Article  Google Scholar 

  78. Tzamtzis N, Psychoyios VN, Nikoleli GP, et al. Flow potentiometric injection analysis of uric acid using lipid stabilized films with incorporated uricase on ZnO nanowir es. Electroanalysis, 2012, 24: 1719–1725

    Google Scholar 

  79. Ali SMU, Ibupoto ZH, Kashif M, et al. A potentiometric indirect uric acid sensor based on ZnO nanoflakes and immobiliz ed uricase. Sensors, 2012, 12: 2787–2797

    Article  Google Scholar 

  80. Jindal K, Tomar M, Gupta V. Nitrogen-doped zinc oxide thin films biosensor for determination of uric acid. Analyst, 2013, 138: 4353–4362

    Article  Google Scholar 

  81. Jindal K, Tomar M, Gupta V. Inducing electrocatalytic functionality in ZnO thin film by N doping to realize a third generation uric acid biose nsor. Biosens Bioelectron, 2014, 55: 57–65

    Article  Google Scholar 

  82. Lei Y, Liu X, Yan X, et al. Multicenter uric acid biosensor based on tetrapod-shaped ZnO nanostructur es. J Nanosci Nanotechno, 2012, 12: 513–518

    Article  Google Scholar 

  83. Ibupoto ZH, Shah SMU, Khun K, Willander M. Electrochemical L-lactic acid sensor based on immobilized ZnO nanorods with la ctate oxidase. Sensors, 2012, 12: 2456–2466

    Article  Google Scholar 

  84. Lei Y, Luo N, Yan X, et al. A highly sensitive electrochemical biosensor based on zinc oxide nanotetrapods for L-lactic a cid detection. Nanoscale, 2012, 4: 3438–3443

    Article  Google Scholar 

  85. Haghighi B, Bozorgzadeh S. Fabrication of a highly sensitive electrochemiluminescence lactate biosensor using ZnO nanoparticles decorated multiwalled ca rbon nanotubes. Talanta, 2011, 85: 2189–2193

    Article  Google Scholar 

  86. Batra N, Tomar M, Gupta V. Realization of an efficient cholesterol biosensor using ZnO nanostruct ured thin film. Analyst, 2012, 137: 5854–5859

    Article  Google Scholar 

  87. Ahmad R, Tripathy N, Hahn YB. Wide linear-range detecting high sensitivity cholesterol biosensors based on aspect-ratio controlled ZnO nanorods grown on silver ele ctrodes. Sens Actuators B, 2012, 169: 382–386

    Article  Google Scholar 

  88. Wang C, Tan X, Chen S, et al. Highly-sensitive cholesterol biosensor based on platinum-gold hybrid functiona lized ZnO nanorods. Talanta, 2012, 94: 263–270

    Article  Google Scholar 

  89. Batra N, Tomar M, Gupta V. Efficient detection of cholesterol using ZnO thin film based matrix. J Exp Nanosci, 2013, 8: 280–287

    Article  Google Scholar 

  90. Psychoyios VN, Nikoleli GP, Tzamtzis N, et al. Potentiometric cholesterol biosensor based on ZnO nanowalls and stabilized polymeri zed lipid film. Electroanalysis, 2013, 25: 367–372

    Article  Google Scholar 

  91. Gu B, Xu C, Zhu G, et al. Layer by layer immobilized horseradish 2009, 113: 6553–6557

    Google Scholar 

  92. Wang Q, Zheng J. Electrodeposition of silver nanoparticles on a zinc oxide film: improvement of amperometric sensing sensitivity and stability for hydrogen peroxide d etermination. Microchim Acta, 2010, 169: 361–365

    Article  Google Scholar 

  93. Xiang C, Zou Y, Sun L, Xu F. Direct electrochemistry and enhanced electrocatalysis of horseradish peroxidase based on flowerlike ZnOgold nanoparticle-Nafion nan ocomposite. Sens Actuators B, 2009, 136: 158–162

    Article  Google Scholar 

  94. Zhang Y, Zhang Y, Wang H, et al. An enzyme immobilization platform for biosensor designs of direct electrochemistry using flower-like ZnO crystals and nano-sized go ld particles. J Electroanal Chem, 2009, 627: 9–14

    Article  Google Scholar 

  95. Chen HC, Hua MY, Liu YC, et al. Preparation of water-dispersible poly[aniline-co-sodium N-(1-one-butyric acid) aniline]-zinc oxide nanocomposite for utilization in an electroche mical sensor. J Mater Chem, 2012, 22: 13252–13259

    Article  Google Scholar 

  96. Ibupoto ZH, Ali SMU, Khun K, et al. ZnO nanorods based enzymatic biosensor for selective determi nation of penicillin. Biosensors, 2011, 1: 153–163

    Article  Google Scholar 

  97. Liu Z, Liu Y, Yang H, et al. A mediator-free tyrosinase biosensor based on Zn O sol-gel matrix. Electroanalysis, 2005, 17: 1065–1070

    Article  Google Scholar 

  98. Zhao J, Wu D, Zhi J. A novel tyrosinase biosensor based on biofunctional ZnO nanorod microarrays on the nanocrystalline diamond electrode for detection of pheno lic compounds. Bioelectrochemistry, 2009, 75: 44–49

    Article  Google Scholar 

  99. Lee JM, Xu GR, Kim BK, et al. Amperometric tyrosinase biosensor based on carbon nanotube-doped sol-gel-derived zinc oxide-Naf ion composite films. Electroanalysis, 2011, 23: 962–970

    Article  Google Scholar 

  100. Devi R, Yadav S, Pundir C. Amperometric determination of xanthine in fish meat by zinc oxide nanoparticle/chitosan/multiwalled carbon nanotube/polyaniline composite film bound xanthine oxidase. Analyst, 2012, 137: 754–759

    Article  Google Scholar 

  101. Pohanka M, Skládal P. Electrochemical biosensors—princ iples and applications. J Appl Biomed, 2008, 6: 57–64

    Google Scholar 

  102. Torsi L, Magliulo M, Manoli K, Palazzo G. Organic field-effect transistor sensors: a tutorial review. Chem Soc Rev, 2013, 42: 8612–8628

    Article  Google Scholar 

  103. Miao YQ, Guan JG, Chen JR. Ion sensitive field effect transducer-based biosensors. Biotechnol Adv, 2003, 21: 527–534

    Article  Google Scholar 

  104. Vijayalakshmi A, Tarunashree Y, Baruwati B, et al. Enzyme field effect transistor (ENFET) for estimation of triglycerides using magnetic n anoparticles. Biosens Bioelectron, 2008, 23: 1708–1714

    Article  Google Scholar 

  105. Soldatkin A, El’Skaya A, Shul’ga A, et al. Glucose-sensitive field-effect transistor with additional Nafion membrane: reduction of influence of buffer capacity on the sensor response and extension of its dynamic range. Anal Chim Acta, 1993, 283: 695–701

    Article  Google Scholar 

  106. Jaffrezic-Renault N, Wan K, Senillou A, et al. Development of new polymeric membranes for ENFETs for biomedical and environmental applications. Analusis, 1999, 27: 578–586

    Article  Google Scholar 

  107. Hamlaoui M, Reybier K, Marrakchi M, et al. Development of a urea biosensor based on a polymeric memb rane including zeolite. Anal Chim Acta, 2002, 466: 39–45

    Article  Google Scholar 

  108. Premanode B, Toumazou C. A novel, low power biosensor for real time monitoring of creatinine and urea in peritoneal dialysis. Sens Actuators B, 2007, 120: 732–735

    Article  Google Scholar 

  109. Hai A, Ben-Haim D, Korbakov N, et al. Acetylcholinesterase-ISFET based system for the detection of acetylcholine and acetylcholinesterase inhibitors. Biosens Bioelectron, 2006, 22: 605–612

    Article  Google Scholar 

  110. Ahmad R, Tripathy N, Hahn Y-B. High-performance cholesterol sensor based on the solution-gated field effect transistor fabricated with ZnO nanorods. Biosens Bioelectron, 2013, 45: 281–286

    Article  Google Scholar 

  111. Cui Y, Zhong Z, Wang D, et al. High performance silicon nano wire field effect transistors. Nano Lett, 2003, 3: 149–152

    Article  Google Scholar 

  112. Duan X, Li Y, Rajan NK, et al. Quantification of the affinities and kinetics of protein interactions using sil icon nanowire biosensors. Nat Nanotechnol, 2012, 7: 401–407

    Article  Google Scholar 

  113. Patolsky F, Zheng G, Lieber CM. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biol ogical and chemical species. Nat Protoc, 2006, 1: 1711–1724

    Article  Google Scholar 

  114. Lapierre-Devlin MA, Asher CL, Taft BJ, et al. Amplified electrocataly sis at DNA-modified nanowires. Nano Lett, 2005, 5: 1051–1055

    Article  Google Scholar 

  115. Maehashi K, Katsura T, Kerman K, et al. Label-free protein biosensor based on aptamer-modified carbon na notube field-effect transistors. Anal Chem, 2007, 79: 782–787

    Article  Google Scholar 

  116. So HM, Won K, Kim YH, et al. Single-walled carbon nanotube biosensors using aptamers as molecula r recognition elements. J Am Chem Soc, 2005, 127: 11906–11907

    Article  Google Scholar 

  117. Kim JP, Lee BY, Hong S, Sim SJ. Ultrasensitive carbon nanotube-based biosensors usin g antibody-binding fragments. Anal Biochem, 2008, 381: 193–198

    Article  Google Scholar 

  118. Fujisawa K, Komiyama K, Muramatsu H, et al. Chirality-dependent transport in double-walled carbon nanotube ass emblies: the role of inner tubes. ACS Nano, 2011, 5: 7547–7554

    Article  Google Scholar 

  119. Gayathri V, Geetha R. Carbon nanotube as NEMS sensor-effect of chirality an d stone-wales defect intend. J Phys Conf Ser, 2006, 34: 824–828

    Article  Google Scholar 

  120. Liu X, Lin P, Yan X, et al. Enzyme-coated single ZnO nanowire FET biosensor for detection of uric acid. Sens Actuators B, 2013, 176: 22–27

    Article  Google Scholar 

  121. Ogata K, Dobashi H, Koike K, et al. Patterned growth of ZnO nanorods and enzyme immobilization toward th e fabrication of glucose sensors. Physica E, 2010, 42: 2880–2883

    Article  Google Scholar 

  122. Ali SM, Nur O, Willander M, Danielsson B. Glucose detection with a commercial MOSFET using a ZnO nano wires extended gate. IEEE Transact Nanotechnol, 2009, 8: 678–683

    Article  Google Scholar 

  123. Lee CT, Chiu YS, Ho SC, Lee YJ. Investigation of a photoelectrochemical pas sivated ZnO-based glucose biosensor. Sensors, 2011, 11: 4648–4655

    Article  Google Scholar 

  124. Kang B, Wang HT, Ren F, et al. AlGaN/GaN HEMT and ZnO nanorod based sens ors for chemical and bio-applications. ECS Trans, 2008, 13: 53–63

    Article  Google Scholar 

  125. Kang B, Wang H, Ren F, et al. Enzymatic glucose detection using ZnO nanorods on the gate region of AlGaN/GaN hig h electron mobility transistors. Appl Phys Lett, 2007, 91: 252103

    Article  Google Scholar 

  126. Chu B, Kang B, Ren F, et al. Enzyme-based lactic acid detection using AlGaN/GaN high electron mobility transistors with ZnO nan orods grown on the gate region. Appl Phys Lett, 2008, 93: 042114

    Article  Google Scholar 

  127. Ma S, Liao Q, Liu H, et al. An excellent enzymatic lactic acid biosensor with ZnO nanowires-gated AlGaAs/GaA s high electron mobility transistor. Nanoscale, 2012, 4: 6415–6418

    Article  Google Scholar 

  128. Zhang X, Zhang Y, Liao Q, et al. Reduced graphene oxide-functionalized high electron mobility transistors for novel rec ognition pattern label-free DNA sensors. Small, 2013, 9: 4045–4050

    Article  Google Scholar 

  129. Li N, Xu JZ, Yao H, et al. The direct electron transfer of myoglobin based on the el ectron tunneling in proteins. J Phys Chem B, 2006, 110: 11561–11565

    Article  Google Scholar 

  130. Kim KE, Kim TG, Sung YM. Enzyme-conjugated ZnO nanocrystals for collisional q uenching-based glucose sensing. Cryst Eng Comm, 2012, 14: 2859–2865

    Article  Google Scholar 

  131. Wang ZL. Piezopotential gated nanowire device s: piezotronics and piezo-phototronics. Nano Today, 2010, 5: 540–552

    Article  Google Scholar 

  132. Zhang Y, Yan X, Yang Y, et al. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv Mater, 2012, 24: 4647–4655

    Article  Google Scholar 

  133. Yang Y, Qi J, Liao Q, et al. High-performance piezoelectric gate diode of a single polar-surface dominated ZnO nanobelt. Nanotechnology, 2009, 20: 125201–125205

    Article  Google Scholar 

  134. Dai Y, Zhang Y, Wang Z. The octa-twin tetraleg ZnO nanostructures. Solid State Commun, 2003, 126: 629–633

    Article  Google Scholar 

  135. Dai Y, Zhang Y, Bai Y, et al. Bicrystalline zinc oxide nanowires. Chem Phys Lett, 2003, 375: 96–101

    Article  Google Scholar 

  136. Zhang Y, Yang Y, Gu Y, et al. Performance and service behavior in 1-D nanostructured energy conversion devices. Nano Energy, Doi: 10. 1016/j.nanoen.2014.12.039

  137. Yu R, Pan C, Wang ZL. High performance of ZnO nanowire protein sensors enh anced by the piezotronic effect. Energy Environ Sci, 2013, 6: 494–499

    Article  Google Scholar 

  138. Ali SMU, Aijazi T, Axelsson K, et al. Wireless remote monitoring of glucose using a functionalized ZnO nanowire arrays based sensor. Sensors, 2011, 11: 8485–8496

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhang.

Additional information

Yue Zhang is vice-president of the University of Science & Technology Beijing. He received his PhD in Materials Physics from the University of Science & Technology Beijing in 1993. He has been awarded the financial support for outstanding young scientist foundation of China and selected as the chief scientist of Major National Scientific Research Projects. His research focuses on nanoenergy device and integration, information-sensing nanodevice and nanosystem, as well as nanomaterial and nanodevice service behavior. He has published more than 300 papers in peer reviewed scientific journals and 8 monographs, and held 25 patents in his research area. His publication has been cited more than 3000 times by peers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Kang, Z., Yan, X. et al. ZnO nanostructures in enzyme biosensors. Sci. China Mater. 58, 60–76 (2015). https://doi.org/10.1007/s40843-015-0017-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-015-0017-6

Keywords

Navigation