Skip to main content
Log in

A Class of Zero Product Determined Banach Algebras

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

The primary objective of this paper is to establish the property of zero product determinacy for the algebra \(\textrm{Alg} \mathcal {L}\), where \(\mathcal {L}\) is either a completely distributive commutative subspace lattice or a subspace lattice with two atoms. This objective is achieved by employing a technical approach that involves demonstrating the isomorphism between the multiplier algebra of the algebra consisting of compact operators belonging to \(\textrm{Alg} \mathcal {L}\) and \(\textrm{Alg} \mathcal {L}\). Furthermore, we investigate the properties of derivations and homomorphisms on these algebras as an application of our main result. Additionally, we prove that in the finite-dimensional case, a unital algebra generated by a single operator is zero product determined if and only if every local derivation from the algebra to any of its Banach bimodules is a derivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alaminos, J., Extremera, J., Villena, A.: Orthogonality preserving linear maps on group algebras. Math. Proc. Camb. Philos. Soc. 158, 493–504 (2015)

    Article  MathSciNet  Google Scholar 

  2. Alaminos, J., Extremera, J., Villena, A., Brešar, M.: Characterizing homomorphisms and derivations on \(C^*\)-algebras. Proc. R. Soc. Edinb. 137, 1–7 (2007)

    Article  MathSciNet  Google Scholar 

  3. Alaminos, J., Extremera, J., Villena, A., Brešar, M., Špenko, Š: Commutators and square-zero elements in Banach algebras. Q. J. Math. 67, 1–13 (2016)

    Article  MathSciNet  Google Scholar 

  4. Argyros, S., Lambrou, M., Longstaff, W.: Atomic Boolean subspace lattices and applications to the theory of bases. Mem. Am. Math. Soc. 91, iv+94 (1991)

    MathSciNet  Google Scholar 

  5. Brešar, M.: Zero Product Determined Algebras. Springer, Cham (2021)

    Book  Google Scholar 

  6. Brešar, M., Šemrl, P.: On bilinear maps on matrices with applications to commutativity preservers. J. Algebra 301, 803–837 (2006)

    Article  MathSciNet  Google Scholar 

  7. Busby, R.: Double centralizers and extensions of C\(^{\ast }\)-algebras. Trans. Am. Math. Soc. 132, 79–99 (1968)

    MathSciNet  Google Scholar 

  8. Conway, J., Wu, P.: The splitting of \(A(T_{1}\oplus T_{2})\) and related questions. Indiana Univ. Math. J. 26, 41–56 (1977)

    Article  MathSciNet  Google Scholar 

  9. Davidson, K., Wright, A.: Operator algebras with unique preduals. Can. Math. Bull. 54, 411–421 (2011)

    Article  MathSciNet  Google Scholar 

  10. Erdos, J.: Operators of finite rank in nest algebras. J. Lond. Math. Soc. 43, 391–397 (1968)

    Article  MathSciNet  Google Scholar 

  11. Erdos, J.: An abstract characterization of nest algebras. Q. J. Math. Oxf. 22, 47–63 (1971)

    Article  MathSciNet  Google Scholar 

  12. Fontenot, R.: The double centralizer algebra as a linear space. Proc. Am. Math. Soc. 53, 99–103 (1975)

    Article  MathSciNet  Google Scholar 

  13. Ghahramani, H.: Zero product determined some nest algebras. Linear Algebra Appl. 438, 303–314 (2013)

    Article  MathSciNet  Google Scholar 

  14. Hou, C., Fu, B.: Local 3-cocycles of von Neumann algebras. Sci. China 50, 1240–1250 (2007)

    Article  MathSciNet  Google Scholar 

  15. Hadwin, D., Li, J.: Local derivations and local automorphisms. J. Math. Anal. Appl. 290, 702–714 (2004)

    Article  MathSciNet  Google Scholar 

  16. Johnson, B.: An introduction to the theory of centralizers. Proc. Lond. Math. Soc. 14, 299–320 (1964)

    Article  MathSciNet  Google Scholar 

  17. Larsen, R.: An Introduction to the Theory of Multipliers. Springer, Berlin (1971)

    Book  Google Scholar 

  18. Laurie, C., Longstaff, W.: A note on rank one operators in reflexive algebras. Proc. Am. Math. Soc. 89, 293–297 (1983)

    Article  MathSciNet  Google Scholar 

  19. Marcoux, L., Popov, A.: Abelian, amenable operator algebras are similar to \(C^*\)-algebras. Duke Math. J. 165, 2391–2406 (2016)

    Article  MathSciNet  Google Scholar 

  20. Manuilov, V., Troitsky, E.: Hilbert \(C^*\)-Modules. American Mathematical Society, Providence (2005)

    Book  Google Scholar 

  21. Papadakis, M.: On hyperreflexivity and rank one density for non-CSL algebras. Stud. Math. 98, 11–17 (1991)

    Article  MathSciNet  Google Scholar 

  22. Samei, E.: Reflexivity and hyperreflexivity of bounded \(n\)-cocycles from group algebras. Proc. Am. Math. Soc. 139, 163–176 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of China (Grant No. 11871021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiankui Li.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest that are pertinent to the content of this article.

Additional information

Communicated by Mohammad Sal Moslehian.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Pan, S. & Su, S. A Class of Zero Product Determined Banach Algebras. Bull. Malays. Math. Sci. Soc. 47, 24 (2024). https://doi.org/10.1007/s40840-023-01625-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40840-023-01625-9

Keywords

Mathematics Subject Classification

Navigation