Skip to main content
Log in

Sharp Pressure Estimates for the Navier–Stokes System in Thin Porous Media

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

A relevant problem for applications is to model the behavior of Newtonian fluids through thin porous media, which is a domain with small thickness \(\epsilon \) and perforated by periodically distributed cylinders of size and period \(\epsilon ^\delta \), with \(\delta >0\). Depending on the relation between thickness and the size of the cylinders, it was introduced in Fabricius et al. (Transp Porous Media 115:473–493, 2016), Anguiano and Suárez-Grau (Z Angew Math Phys 68:45, 2017) and Anguiano and Suárez-Grau (Mediterr J Math 15:45, 2018) that there exist three regimes depending on the value of \(\delta \): \(\delta \in (0,1)\), \(\delta =1\) and \(\delta >1\). In each regime, the asymptotic behavior of the fluid is governed by a lower-dimensional Darcy’s law. In previous studies, the Reynolds number is considered to be of order one and so, the question that arises is for what range of values of the Reynolds number the lower-dimensional Darcy laws are still valid in each regime, which represents the main the goal of this paper. In this sense, considering a fluid governed by the Navier–Stokes system and assuming the Reynolds number written in terms of the thickness \(\epsilon \), we prove that, for each regime, there exists a critical Reynolds number \({\textrm{Re}}_c\) such that for every Reynolds number Re with order smaller or equal than \({\textrm{Re}}_c\), the lower-dimensional Darcy law is still valid. On the contrary, for Reynolds numbers Re greater than \({\textrm{Re}}_c\), the inertial term of the Navier–Stokes system has to be taken into account in the asymptotic behavior and so, the Darcy law is not valid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anguiano, M.: Darcy’s laws for non-stationary viscous fluid flow in a thin porous medium. Math. Methods Appl. Sci. 40, 2878–2895 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anguiano, M.: On the non-stationary non-Newtonian flow through a thin porous medium. ZAMM-Z. Angew. Math. Mech. 97, 895–915 (2017)

    Article  MathSciNet  Google Scholar 

  3. Anguiano, M.: Derivation of a quasi-stationary coupled Darcy-Reynolds equation for incompressible viscous fluid flow through a thin porous medium with a fissure. Math. Methods Appl. Sci. 40, 4738–4757 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anguiano, M.: Homogenization of a non-stationary non-Newtonian flow in a porous medium containing a thin fissure. Eur. J. Appl. Math. 30, 248–277 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anguiano, M.: Reaction–diffusion equation on thin porous media. Bull. Malays. Math. Sci. Soc. 44, 3089–3110 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Anguiano, M.: On p-Laplacian reaction–diffusion problems with dynamical boundary conditions in perforated media. Mediterr. J. Math. 20, 124 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  7. Anguiano, M., Bonnivard, M., Suárez-Grau, F.J.: Carreau law for non-Newtonian fluid flow through a thin porous media. Q. J. Mech. Appl. Math. 75, 1–27 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. Anguiano, M., Bunoiu, R.: On the flow of a viscoplastic fluid in a thin periodic domain. In: Constanda, C., Harris, P. (eds.) Integral Methods in Science and Engineering, pp. 15–24. Birkhäuser, Cham (2019)

    Chapter  MATH  Google Scholar 

  9. Anguiano, M., Bunoiu, R.: Homogenization of Bingham flow in thin porous media. Netw. Heterog. Media 15, 87–110 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Anguiano, M., Suárez-Grau, F.J.: Homogenization of an incompressible non-Newtonian flow through a thin porous medium. Z. Angew. Math. Phys. 68, 45 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Anguiano, M., Suárez-Grau, F.J.: Derivation of a coupled Darcy-Reynolds equation for a fluid flow in a thin porous medium including a fissure. Z. Angew. Math. Phys. 68, 52 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Anguiano, M., Suárez-Grau, F.J.: Analysis of the effects of a fissure for a non-Newtonian fluid flow in a porous medium. Commun. Math. Sci. 16, 273–292 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Anguiano, M., Suárez-Grau, F.J.: The transition between the Navier–Stokes equations to the Darcy equation in a thin porous medium. Mediterr. J. Math. 15, 45 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Anguiano, M., Suárez-Grau, F.J.: Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions. Netw. Heterog. Media 14, 289–316 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Anguiano, M., Suárez-Grau, F.J.: Lower-dimensional nonlinear Brinkman’s law for non-Newtonian flows in a thin porous medium. Mediterr. J. Math. 18, 175 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Armiti-Juber, A.: On the limit of a two-phase flow problem in thin porous media domains of Brinkman type. Math. Methods Appl. Sci. 45, 2563–2581 (2022)

    Article  MathSciNet  Google Scholar 

  17. Bayada, G., Benhaboucha, N., Chambat, M.: Modeling of a thin film passing a thin porous medium. Asymptot. Anal. 37, 227–256 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Boettcher, K.E.R., Fischer, M.-D., Neumann, T., Ehrhard, P.: Experimental investigation of the pre-Darcy regime. Exp. Fluids 63, 42 (2022)

    Article  Google Scholar 

  19. Boughanim, F., Tapiéro, R.: Derivation of the two-dimensional Carreau law for a quasi-Newtonian fluid flow through a thin slab. Appl. Anal. 57, 243–269 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bourgeat, A., Mikelić, A.: Homogenization of a polymer flow through a porous medium. Nonlinear Anal. 26, 1221–1253 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bunoiu, R., Timofte, C.: Upscaling of a double porosity problem with jumps in thin porous media. Appl. Anal. 101, 3497–3514 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cioranescu, D., Damlamian, A., Griso, G.: The periodic unfolding method in homogenization. SIAM J. Math. Anal. 40, 1585–1620 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dybbs, A., Edwards, R.V.: A new look at porous media fluid mechanics—Darcy to turbulent. In: Bear, J., Corapcioglu, M.Y. (eds.) Fundamentals of Transport Phenomena in Porous Media, NATO ASI Series 82, pp. 199–256. Springer, Dordrecht (1984)

    Chapter  Google Scholar 

  24. Fabricius, J., Hellström, J.G.I., Lundström, T.S., Miroshnikova, E., Wall, P.: Darcy’s law for flow in a periodic thin porous medium confined between two parallel plates. Transp. Porous Media 115, 473–493 (2016)

    Article  MathSciNet  Google Scholar 

  25. Jouybari, N.F., Lundström, T.S.: Investigation of post-Darcy flow in thin porous media. Transp. Porous Media 138, 157–184 (2021)

    Article  MathSciNet  Google Scholar 

  26. Larsson, I.A.S., Lundström, T.S., Lycksam, H.: Tomographic PIV of flow through ordered thin porous media. Exp. Fluids 59, 96 (2018)

    Article  Google Scholar 

  27. Pérez-Ràfols, F., Wall, P., Almqvist, A.: On compressible and piezo-viscous flow in thin porous media. Proc. R. Soc. A 474, 20170601 (2018)

    Article  MATH  Google Scholar 

  28. Prat, M., Agësse, T.: Thin porous media. In: Vafai, K. (ed.) Handbook of Porous Media, pp. 89–112. CRC Press, Boca Raton (2015)

    Google Scholar 

  29. Scholz, L., Bringedal, C.: A three-dimensional homogenization approach for effective heat transport in thin porous media. Transp. Porous Media 141, 737–769 (2022)

    Article  MathSciNet  Google Scholar 

  30. Suárez-Grau, F.J.: Mathematical modeling of micropolar fluid flows through a thin porous medium. J. Eng. Math. 126, 7 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Suárez-Grau, F.J.: Theoretical derivation of Darcy’s law for fluid flow in thin porous media. Math. Nachr. 295, 607–623 (2022)

    Article  MathSciNet  Google Scholar 

  32. Valizadeh, A., Rudman, M.: A numerical approach for simulating flow through thin porous media. Eur. J. Mech. B/Fluids 138, 1–23 (2021)

    MATH  Google Scholar 

  33. Wagner, A., et al.: Permeability estimation of regular porous structures: a benchmark for comparison of methods. Transp. Porous Media 65, 31–44 (2017)

    MathSciNet  Google Scholar 

  34. Yeghiazarian, L., Pillai, K., Rosati, R.: Thin porous media. Transp. Porous Media 115, 407–410 (2016)

    Article  MathSciNet  Google Scholar 

  35. Zeng, Z., Grigg, R.: A criterion for non-Darcy flow in porous media. Transp. Porous Media 63, 57–69 (2006)

    Article  Google Scholar 

  36. Zhengan, Y., Hongxing, Z.: Homogenization of a stationary Navier–Stokes flow in porous medium with thin film. Acta Math. Sci. 28, 963–974 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Suárez-Grau.

Ethics declarations

Conflict of interest

The authors confirm that there is no conflict of interest to report.

Additional information

Communicated by Yong Zhou.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anguiano, M., Suárez-Grau, F.J. Sharp Pressure Estimates for the Navier–Stokes System in Thin Porous Media. Bull. Malays. Math. Sci. Soc. 46, 117 (2023). https://doi.org/10.1007/s40840-023-01514-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40840-023-01514-1

Keywords

Mathematics Subject Classification

Navigation