Abstract
We study some properties of \(\mathsf {Lie}\)-centroids related to central \(\mathsf {Lie}\)-derivations, generalized \(\mathsf {Lie}\)-derivations and almost inner \(\mathsf {Lie}\)-derivations. We also determine the \(\mathsf {Lie}\)-centroid of the tensor product of a commutative associative algebra and a Leibniz algebra.
Similar content being viewed by others
Change history
24 October 2022
A Correction to this paper has been published: https://doi.org/10.1007/s40840-022-01393-y
References
Ayupov, S., Omirov, B.A., Rakhimov, I.S.: Leibniz algebras: structure and classification. Mathematics and its applications. Chapman and Hall/CRC, New York (2020)
Benkart, G., Neher, E.: The centroid of extended affine and root graded Lie algebras. J. Pure Appl. Algebra 205(1), 117–145 (2006)
Biyogmam, G.R., Casas, J.M.: On \({\sf {Lie}}\)-isoclinic Leibniz algebras. J. Algebra 499, 337–357 (2018)
Biyogmam, G.R., Casas, J.M.: The \(c\)-nilpotent Schur \({\sf {Lie}}\)-multiplier of Leibniz algebras. J. Geom. Phys. 138, 55–69 (2019)
Biyogmam, G.R., Casas, J.M., Pacheco-Rego, N.: \({\sf {Lie}}\)-central derivations, \({\sf {Lie}}\)-centroids and \({\sf {Lie}}\)-stem Leibniz algebras. Publ. Math. Debrecen 97(1–2), 217–239 (2020)
Casas, J.M., Insua, M.A.: The Schur \({\sf {Lie}}\)-multiplier of Leibniz algebras. Quaest. Math. 41(7), 917–936 (2018)
Casas, J.M., Insua, M.A., Ladra, M., Ladra, S.: An algorithm for the classification of 3-dimensional complex Leibniz algebras. Linear Algebra Appl. 436(9), 3747–3756 (2012)
Casas, J.M., Khmaladze, E.: On \({\sf {Lie}}\)-central extensions of Leibniz algebras. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 111(1), 39–56 (2017)
Casas, J.M., Van der Linden, T.: Universal central extensions in semi-abelian categories. Appl. Categ. Struct. 22(1), 253–268 (2014)
Cuvier, C.: Algèbres de Leibnitz: définitions, propriétés. Ann. Sci. École Norm. Sup. (4) 27(1), 1–45 (1994)
Everaert, T.: Relative commutator theory in varieties of \(\Omega \)-groups. J. Pure Appl. Algebra 210(1), 1–10 (2007)
Everaert, T., Van der Linden, T.: Baer invariants in semi-abelian categories. I. General theory. Theory Appl. Categ. 12(1), 1–33 (2004)
Everaert, T., Van der Linden, T.: Relative commutator theory in semi-abelian categories. J. Pure Appl. Algebra 216(8–9), 1791–1806 (2012)
Fröhlich, A.: Baer-invariants of algebras. Trans. Amer. Math. Soc. 109, 221–244 (1963)
Furtado-Coelho, J.: Homology and generalized Baer invariants. J. Algebra 40(2), 596–609 (1976)
García-Martínez, X., Gray, J.R.A.: Algebraic exponentiation for Lie algebras. Theory Appl. Categ. 36(11), 288–305 (2021)
García-Martínez, X., Tsishyn, M., Van der Linden, T., Vienne, C.: Algebras with representable representations. Proc. Edinburgh Math. Soc. 64(3), 555–573 (2021)
García-Martínez, X., Van der Linden, T.: A characterisation of Lie algebras amongst anti-commutative algebras. J. Pure Appl. Algebra 223(11), 4857–4870 (2019)
García-Martínez, X., Van der Linden, T.: A characterisation of Lie algebras via algebraic exponentiation. Adv. Math. 341, 92–117 (2019)
Higgins, P.J.: Groups with multiple operators. Proc. London Math. Soc. 3(6), 366–416 (1956)
Huq, S.A.: Commutator, nilpotency, and solvability in categories. Quart. J. Math. Oxford Ser. 2(19), 363–389 (1968)
Janelidze, G.: Pure Galois theory in categories. J. Algebra 132(2), 270–286 (1990)
Janelidze, G., Kelly, G.M.: Galois theory and a general notion of central extension. J. Pure Appl. Algebra 97(2), 135–161 (1994)
Loday, J.-L.: Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign. Math. (2) 39(3–4), 269–293 (1993)
Loday, J.-L.: Cyclic homology, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1998, Appendix E by María O. Ronco, Chapter 13 by the author in collaboration with Teimuraz Pirashvili
Loday, J.-L., Pirashvili, T.: The tensor category of linear maps and Leibniz algebras. Georgian Math. J. 5(3), 263–276 (1998)
Lue, A.S.-T.: Baer-invariants and extensions relative to a variety. Proc. Cambridge Philos. Soc. 63, 569–578 (1967)
McCrimmon, K.: Jordan centroids. Comm. Algebra 27(2), 933–954 (1999)
Neher, E.: Lie tori. C. R. Math. Acad. Sci. Soc. R. Can. 26(3), 84–89 (2004)
Ni, J.: Centroids of Zinbiel algebras. Comm. Algebra 42(4), 1844–1853 (2014)
Omirov, B.A.: Conjugacy of Cartan subalgebras of complex finite-dimensional Leibniz algebras. J. Algebra 302(2), 887–896 (2006)
Rakhimov, I.S., Rikhsiboev, I.M., Basri, W.: Complete lists of low dimensional complex associative algebras. (2009) arXiv:0910.0932v2
Richardson, P.A.: Centroids of quadratic Jordan superalgebras. Comm. Algebra 36(1), 179–207 (2008)
Riyahi, Z., Casas Mirás, J.M.: \({\sf {Lie}}\)-isoclinism of pairs of Leibniz algebras. Bull. Malays. Math. Sci. Soc. 43(1), 283–296 (2020)
Ruipu, B., Daoji, M.: The centroid of \(n\)-Lie algebras. Algebras Groups Geom. 21(1), 29–38 (2004)
Zhang Zhi, X., Liu Li, Q.: Invariant bilinear forms on Lie superalgebras. Chinese Ann. Math. Ser. A 25(2), 139–146 (2004)
Acknowledgements
We would like to thank the anonymous referees for their helpful comments and remarks that greatly improved the quality of the paper. The first and second authors were supported by Ministerio de Ciencia e Innovación (Spain), with grant number PID2020-115155GB-I00. The second author is a Postdoctoral Fellow of the Research Foundation–Flanders (FWO).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Communicated by Rosihan M. Ali.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The original version of this article was revised: In this article the affiliations were incorrectly assigned. The original article has been corrected.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Mirás, J.M.C., García-Martínez, X. & Pacheco-Rego, N. On Some Properties of Lie-Centroids of Leibniz Algebras. Bull. Malays. Math. Sci. Soc. 45, 3499–3520 (2022). https://doi.org/10.1007/s40840-022-01389-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40840-022-01389-8
Keywords
- \(\mathsf {Lie}\)-central derivations
- \(\mathsf {Lie}\)-centroid
- Generalized \(\mathsf {Lie}\)-derivation
- Quasi-\(\mathsf {Lie}\)-centroid
- Almost inner-\(\mathsf {Lie}\)-derivations