Skip to main content
Log in

A Nonmonotone Scaled Fletcher–Reeves Conjugate Gradient Method with Application in Image Reconstruction

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In an effort to make modification on the classical Fletcher–Reeves method, Jiang and Jian suggested an efficient nonlinear conjugate gradient algorithm which possesses the sufficient descent property when the line search fulfills the strong Wolfe conditions. Here, we develop a scaled modified version of the method which satisfies the sufficient descent condition independent of the line search. Also, a nonmonotone backtracking Armijo-type line search is proposed under which the global convergence of the method is established without convexity assumption. Performance of the method is evaluated by computational experiments on a set of CUTEr test functions and also, on the image reconstruction as a case study. The results show numerical efficiency of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abubakar, A.B., Kumam, P., Mohammad, H., Awwal, A.M., Sitthithakerngkiet, K.: A modified Fletcher–Reeves conjugate gradient method for monotone nonlinear equations with some applications. Mathematics 7(8), 745 (2019)

    Article  Google Scholar 

  2. Aminifard, Z., Babaie–Kafaki, S.: An optimal parameter choice for the Dai–Liao family of conjugate gradient methods by avoiding a direction of the maximum magnification by the search direction matrix. 4OR, 17:317–330, (2019)

  3. Andrei, N.: Convex functions. Adv. Model. Optim. 9(2), 257–267 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Babaie-Kafaki, S., Ghanbari, R.: A hybridization of the Polak-Ribière-Polyak and Fletcher-Reeves conjugate gradient methods. Numer. Algorithms 68(3), 481–495 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barzilai, J., Borwein, J.M.: Two-point stepsize gradient methods. IMA J. Numer. Anal. 8(1), 141–148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, J., Wu, J.: A conjugate gradient algorithm and its applications in image restoration. Appl. Numer. Math. 152, 243–252 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, C., Ma, Y., Ren, G.: A convolutional neural network with Fletcher–Reeves algorithm for hyperspectral image classification. Remote Sens. 11(11), 1325 (2019)

    Article  Google Scholar 

  8. Dai, Y.H.: On the nonmonotone line search. J. Optim. Theory Appl. 112(2), 315–330 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dai, Y.H., Han, J.Y., Liu, G.H., Sun, D.F., Yin, H.X., Yuan, Y.X.: Convergence properties of nonlinear conjugate gradient methods. SIAM J. Optim. 10(2), 348–358 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Dai, Zh., Kang, J.: Some new efficient mean-variance portfolio selection models. Int. J. Finance Econ. (2021). https://doi.org/10.1002/ijfe.2400

    Article  Google Scholar 

  11. Dai, Zh., Kang, J., Wen, F.: Predicting stock returns: a risk measurement perspective. Int. Rev. Financial Anal. 74, 101676 (2021)

    Article  Google Scholar 

  12. Dai, Zh., Zhu, H., Kang, J.: New technical indicators and stock returns predictability. Int. Rev. Econ. Finance 71, 127–142 (2021)

    Article  Google Scholar 

  13. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2 Ser A), 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Esmaeili, H., Shabani, S., Kimiaei, M.: A new generalized shrinkage conjugate gradient method for sparse recovery. Calcolo 56(1), 1–38 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7(2), 149–154 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gilbert, J.C., Nocedal, J.: Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim. 2(1), 21–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gould, N.I.M., Orban, D., Toint, Ph.L.: CUTEr: a constrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29(4), 373–394 (2003)

    Article  MATH  Google Scholar 

  18. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23(4), 707–716 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hager, W.W., Zhang, H.: Algorithm 851: CG\(_{-}\)Descent, a conjugate gradient method with guaranteed descent. ACM Trans. Math. Softw. 32(1), 113–137 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hager, W.W., Zhang, H.: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2(1), 35–58 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Jiang, X., Jian, J.: Improved Fletcher-Reeves and Dai-Yuan conjugate gradient methods with the strong Wolfe line search. J. Comput. Appl. Math. 348, 525–534 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Keshtegar, B., Hasanipanah, M., Bakhshayeshi, I., Sarafraz, M.E.: A novel nonlinear modeling for the prediction of blast-induced airblast using a modified conjugate FR method. Measurement 131, 35–41 (2019)

    Article  Google Scholar 

  23. Li, X., Zhang, W., Dong, X.: A class of modified FR conjugate gradient method and applications to non-negative matrix factorization. Comput. Math. Appl. 73, 270–276 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, J.K., Feng, Y.M., Zou, L.M.: A spectral conjugate gradient method for solving large-scale unconstrained optimization. Comput. Math. Appl. 77(3), 731–739 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ng, K.W., Rohanin, A.: Modified Fletcher-Reeves and Dai-Yuan conjugate gradient methods for solving optimal control problem of monodomain model. Appl. Math. 73(2), 864–872 (2012)

    Article  Google Scholar 

  26. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  27. Polak, E., Ribière, G.: Note sur la convergence de méthodes de directions conjuguées. Rev. Française Informat. Recherche Opérationnelle 3(16), 35–43 (1969)

    MathSciNet  MATH  Google Scholar 

  28. Polyak, B.T.: The conjugate gradient method in extreme problems. USSR Comp. Math. Math. Phys. 9(4), 94–112 (1969)

    Article  MATH  Google Scholar 

  29. Sun, W., Yuan, Y.X.: Optimization Theory and Methods: Nonlinear Programming. Springer, New York (2006)

    MATH  Google Scholar 

  30. Sun, Z., Tian, Y., Wang, J.: A novel projected Fletcher-Reeves conjugate gradient approach for finite-time optimal robust controller of linear constraints optimization problem: Application to bipedal walking robots. Optim. Control Appl. Methods 39(1), 130–159 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Toint, Ph.L.: An assessment of nonmonotone line search techniques for unconstrained optimization. SIAM J. Sci. Comput. 17(3), 725–739 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yu, G., Huang, J., Zhou, Y.: A descent spectral conjugate gradient method for impulse noise removal. Appl. Math. Lett. 23(5), 555–560 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yuan, G., Li, T., Hu, W.: A conjugate gradient algorithm and its application in large-scale optimization problems and image restoration. J. Inequal. Appl. 2019(1), 247 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yuan, G., Li, T., Hu, W.: A conjugate gradient algorithm for large-scale nonlinear equations and image restoration problems. Appl. Numer. Math. 147, 129–141 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yuan, G., Meng, Z., Li, Y.: A modified Hestenes and Stiefel conjugate gradient algorithm for large-scale nonsmooth minimizations and nonlinear equations. J. Optim. Theory Appl. 168(1), 129–152 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, H., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14(4), 1043–1056 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, L., Zhou, W., Li, D.: Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search. Numer. Math. 104(4), 561–572 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, L., Zhou, W., Li, D.H.: A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. 26(4), 629–640 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, L., Zhou, W., Li, D.H.: Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search. Numer. Math. 104(4), 561–572 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is based upon research funded by Iran National Science Foundation (INSF) under project No 4000309. The authors are grateful to Professor Michael Navon for providing the strong Wolfe line search code. They also thank the anonymous reviewers for their valuable comments that helped to improve the quality of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saman Babaie-Kafaki.

Additional information

Communicated by Anton Abdulbasah Kamil.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirhoseini, N., Babaie-Kafaki, S. & Aminifard, Z. A Nonmonotone Scaled Fletcher–Reeves Conjugate Gradient Method with Application in Image Reconstruction. Bull. Malays. Math. Sci. Soc. 45, 2885–2904 (2022). https://doi.org/10.1007/s40840-022-01303-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-022-01303-2

Keywords

Mathematics Subject Classification

Navigation