Skip to main content
Log in

Abstract

For an ordered non-empty subset \( S=\{v_1,\ldots , v_k\}\) of vertices in a connected graph G and an l-clique \(V'\) of G, the l-clique metric S-representation of \(V'\) is the vector \(r^l_G(V'|S) = (d_G(V',v_1), \ldots , d_G(V',v_k))\,\) where \(d_G(V',v_i)=\min \{d_G(v,v_i): v\in V'\}\). A non-empty subset S of V(G) is an l-clique metric generator for G if all l-cliques of G have pairwise different l-clique metric S-representations. An l-clique metric generator of smallest order is an l-clique metric basis for G, its order being the l-clique metric dimension (l-CMD for short) \(\mathrm{cdim}_l(G)\) of G. In this paper, we propose this concept as an extension of the 1-clique metric dimension which is known as the metric dimension, and also study some its properties. Moreover, l-CMD for \(\Gamma ({\mathbb {Z}}_n)\) and the corona product of two graphs is investigated. Furthermore, we prove that computing the l-CMD of connected graphs is NP-hard and present an integer linear programming model for finding this parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Afkhami, M., Barati, Z., Khashyarmanesh, K.: On the Laplacian spectrum of the comaximal graphs (submitted)

  2. Bondy, J.A., Murty, U.S.R.: Graph theory, Graduate Texts in Mathematics, vol. 244. Springer, New York (2008)

    Google Scholar 

  3. Buszkowski, P.S., Chartrand, G., Poisson, C., Zhang, P.: On \(K\)-dimensional graphs and their bases. Periodico Mathematica Hungarica 46, 9–15 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caceres, J., Hernando, C., Mora, M., Pelayo, I.M., Puertas, M.L., Seara, C., Wood, D.R.: On the metric dimension of some families of graphs. Electron. Notes Discret. Math. 22, 129–133 (2005)

    Article  MATH  Google Scholar 

  5. Caceres, J., Hernando, C., Mora, M., Pelayo, I.M., Puertas, M.L., Seara, C., Wood, D.R.: On the metric dimension of cartesian products of graphs. SIAM J. Discret. Math. 21(2), 423–441 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs and the metric dimension of a graph. Discret. Appl. Math. 105, 99–113 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. McGraw-Hill book company, The MIT Press (2003)

  8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  9. Das, K.C., Tavakoli, M.: Bounds for metric dimension and defensive \(k\)-alliance of graphs under deleted lexicographic product. Trans. Comb. 9(1), 31–39 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Epstein, L.L., Levin, A., Woeginger, G.J.: The (weighted) metric dimension of graphs: hard and easy cases. Algorithmica 72, 1130–1171 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  12. Hakanen, A., Laihonen, T.: On {l}-metric dimensions in graphs. Fund. Inform. 162, 143–160 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Johnson, M.: Structure-activity maps for visualizing the graph variables arising in drug design. J. Biopharm. Stat. 3, 203–236 (1993)

    Article  MATH  Google Scholar 

  14. Kelenc, A., Tratnik, N., Yero, I.G.: Uniquely identifying the edges of a graph: the edge metric dimension. Discret. Appl. Math. 256, 204–220 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discret. Appl. Math. 70, 217–229 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Maimani, H.R., Salimi, M., Sattari, A., Yassemi, S.: Comaximal graph of commutative rings. J. Algebra 319, 1801–1808 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schwenk, A.J.: Computing the characteristic polynomial of a graph. In: Graphs and Combinatorics. Lecture Notes in Math., vol. 406, pp. 153–172. Springer, Berlin (1974)

  18. Peterin, I., Yero, I.G.: Edge metric dimension of some graph operations. Bull. Malays. Math. Sci. Soc. (2019). https://doi.org/10.1007/s40840-019-00816-7

    Article  MATH  Google Scholar 

  19. Saputro, S.W., Simanjuntak, R., Uttunggadewa, S., Assiyatun, H., Baskoro, E.T., Salman, A.N.M., Bača, M.: The metric dimension of the lexicographic product of graphs. Discret. Math. 313, 1045–1051 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sharma, P.K., Bhatwadekar, S.M.: A note on graphical representation of rings. J. Algebra 176, 124–127 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Slater, P.J.: Leaves of trees. Congr. Numer. 14, 549–559 (1975)

    MathSciNet  MATH  Google Scholar 

  22. Slavko, M.M., Petrovic, Z.Z.: On the structure of comaximal graphs of commutative rings with identity. Bull. Aust. Math. Soc. 83, 11–21 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tavakoli, M., Rahbarnia, F., Ashrafi, A.R.: Distribution of some graph invariants over hierarchical product of graphs. Appl. Math. Comput. 220, 405–413 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Vukičević, D., Zhao, S., Sedlar, J., Xu, S.-J., Došlić, T.: Global forcing number for maximal matchings. Discret. Math. 341, 801–809 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, H.J.: Graphs associated to co-maximal ideals of commutative rings. J. Algebra 320, 2917–2933 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yero, I.G., Kuziak, D., Rodríguez-Velázquez, J.A.: On the metric dimension of corona product graphs. Comput. Math. Appl. 61, 2793–2798 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Young, M.: Adjacency matrices of zero-divisor graphs of integers modulo \(n\). Involve 8, 753–761 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the referees for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojgan Afkhami.

Additional information

Communicated by Sanming Zhou.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afkhami, M., Khashyarmanesh, K. & Tavakoli, M. l-Clique Metric Dimension of Graphs. Bull. Malays. Math. Sci. Soc. 45, 2865–2883 (2022). https://doi.org/10.1007/s40840-022-01299-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-022-01299-9

Keywords

Mathematics Subject Classification

Navigation