Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55(2), 472–495 (2017)
MathSciNet
MATH
Article
Google Scholar
Ames, K.A., Payne, L.E.: Continuous dependence on modeling for some well-posed perturbations of the backward heat equation. J. Inequal. Appl. 3(1), 51–64 (1999)
MathSciNet
MATH
Google Scholar
Benson, D.A., Meerschaert, M.M., Revielle, J.: Fractional calculus in hydrologic modeling: a numerical perspective. Adv. Water Resources 51, 479–497 (2013)
Article
Google Scholar
Carasso, A.S., Sanderson, J.G., Hyman, J.M.: Digital removal of random media image degradations by solving the diffusion equation backwards in time. SIAM J. Numer. Anal. 15(2), 344–367 (1978)
MathSciNet
MATH
Article
Google Scholar
Cheng-Wu, L., Hong-Lai, X., Cheng, G., Wen-biao, L.: Modeling and experiments for the time-dependent diffusion coefficient during methane desorption from coal. J. Geophys. Eng. 15(2), 315–329 (2018)
Article
Google Scholar
Dang, D.T., Nane, E., Nguyen, D.M., Tuan, N.H.: Continuity of solutions of a class of fractional equations. Potential Anal. 49(3), 423–478 (2018)
MathSciNet
MATH
Article
Google Scholar
Dang, D.T., Nguyen, H.T.: Regularization and error estimates for nonhomogeneous backward heat problems. Electron. J. Differ. Equ. No. 4, 10 (2006)
Dudko, O.K., Berezhkovskii, A.M., Weiss, G.H.: Time-dependent diffusion coefficients in periodic porous materials. J. Phys. Chem. B 109(45), 21296–21299 (2005)
Article
Google Scholar
Ervin, V.J., Heuer, N., Roop, J.P.: Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation. SIAM J. Numer. Anal. 45(2), 572–591 (2007)
MathSciNet
MATH
Article
Google Scholar
Giestas, M., Joyce, A., Pina, H.: The influence of non-constant diffusivities on solar ponds stability. Int. J. Heat Mass Transf. 40(18), 4379–4391 (1997)
MATH
Article
Google Scholar
Gorenflo, R., Mainardi, F.: Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1(2), 167–191 (1998)
MathSciNet
MATH
Google Scholar
Gorenflo, R., Mainardi, F.: Random walk models approximating symmetric space-fractional diffusion processes. In: Problems and Methods in Mathematical Physics, pp. 120–145. Springer (2001)
Hanyga, A.: Multidimensional solutions of space-fractional diffusion equations. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457(2016), 2993–3005 (2001)
MathSciNet
MATH
Article
Google Scholar
Hào, D.N., Van Duc, N.: Stability results for the heat equation backward in time. J. Math. Anal. Appl. 353(2), 627–641 (2009)
MathSciNet
MATH
Article
Google Scholar
Hào, D.N., Van Duc, N., Sahli, H.: A non-local boundary value problem method for parabolic equations backward in time. J. Math. Anal. Appl. 345(2), 805–815 (2008)
MathSciNet
MATH
Article
Google Scholar
Hao, Z., Zhang, Z.: Optimal regularity and error estimates of a spectral Galerkin method for fractional advection-diffusion-reaction equations. SIAM J. Numer. Anal. 58(1), 211–233 (2020)
MathSciNet
MATH
Article
Google Scholar
Huang, Y., Oberman, A.: Numerical methods for the fractional Laplacian: a finite difference-quadrature approach. SIAM J. Numer. Anal. 52(6), 3056–3084 (2014)
MathSciNet
MATH
Article
Google Scholar
Karimi, M., Moradlou, F., Hajipour, M.: Regularization technique for an inverse space-fractional backward heat conduction problem. J. Sci. Comput. 83(2), Paper No. 37, 29 (2020)
Khanh, T.Q., Van Hoa, N.: On the axisymmetric backward heat equation with non-zero right hand side: regularization and error estimates. J. Comput. Appl. Math. 335, 156–167 (2018)
MathSciNet
MATH
Article
Google Scholar
Khieu, T.T., Vo, H.-H.: Recovering the historical distribution for nonlinear space-fractional diffusion equation with temporally dependent thermal conductivity in higher dimensional space. J. Comput. Appl. Math. 345, 114–126 (2019)
MathSciNet
MATH
Article
Google Scholar
Liu, Q., Liu, F., Turner, I., Anh, V.: Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method. J. Comput. Phys. 222(1), 57–70 (2007)
MathSciNet
MATH
Article
Google Scholar
Minh, T.L., Khieu, T.T., Khanh, T.Q., Vo, H.-H.: On a space fractional backward diffusion problem and its approximation of local solution. J. Comput. Appl. Math. 346, 440–455 (2019)
MathSciNet
MATH
Article
Google Scholar
Miranker, W.L.: A well posed problem for the backward heat equation. Proc. Am. Math. Soc. 12, 243–247 (1961)
MathSciNet
MATH
Article
Google Scholar
Morita, A., Bagchi, B.: Time dependent diffusion coefficient and the transient dynamics of diffusion controlled bimolecular reactions in liquids: a mode coupling theory analysis. J. Chem. Phys. 110(17), 8643–8652 (1999)
Article
Google Scholar
Payne, L.E.: Improperly posed problems in partial differential equations. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1975. Regional Conference Series in Applied Mathematics, No. 22
Petersen, J.S., Mack, C.A., Sturtevant, J.L., Byers, J.D., Miller, D.A.: Nonconstant diffusion coefficients: short description of modeling and comparison to experimental results. In: Advances in Resist Technology and Processing XII, vol. 2438, pp. 167–181. International Society for Optics and Photonics (1995)
Rais, D., Mensik, M., Paruzel, B., Toman, P., Pfleger, J.: Concept of the time-dependent diffusion coefficient of polarons in organic semiconductors and its determination from time-resolved spectroscopy. J. Phys. Chem. C 122(40), 22876–22883 (2018)
Article
Google Scholar
Renardy, M., Hrusa, W.J., Nohel, J.A.: Mathematical problems in viscoelasticity, volume 35 of Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientific & Technical, Harlow (1987)
Saadatmandi, A., Dehghan, M.: A tau approach for solution of the space fractional diffusion equation. Comput. Math. Appl. 62(3), 1135–1142 (2011)
MathSciNet
MATH
Article
Google Scholar
Schurr, J.M.: Time-dependent diffusion coefficients. J. Chem. Phys. 74(2), 1428–1430 (1981)
Article
Google Scholar
Seshadri, V., West, B.J.: Fractal dimensionality of Lévy processes. Proc. Nat. Acad. Sci. USA 79(14), 4501–4505 (1982)
MATH
Article
Google Scholar
Shen, S., Liu, F.: Error analysis of an explicit finite difference approximation for the space fractional diffusion equation with insulated ends. ANZIAM J. 46(C):C871–C887 (2004/05)
Shi, C., Wang, C., Wei, T.: Convolution regularization method for backward problems of linear parabolic equations. Appl. Numer. Math. 108, 143–156 (2016)
MathSciNet
MATH
Article
Google Scholar
Skaggs, T.H., Kabala, Z.J.: Recovering the history of a groundwater contaminant plume: method of quasi-reversibility. Water Resources Res. 31(11), 2669–2673 (1995)
Article
Google Scholar
Sun, H.G., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.Q.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018)
MATH
Article
Google Scholar
Tautenhahn, U., Schröter, T.: On optimal regularization methods for the backward heat equation. Z. Anal. Anwendungen 15(2), 475–493 (1996)
MathSciNet
MATH
Article
Google Scholar
Tian, W.Y., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84(294), 1703–1727 (2015)
MathSciNet
MATH
Article
Google Scholar
Trong, D.D., Hai, D.N.D., Minh, N.D.: Stepwise regularization method for a nonlinear Riesz-Feller space-fractional backward diffusion problem. J. Inverse Ill-Posed Probl. 27(6), 759–775 (2019)
MathSciNet
MATH
Article
Google Scholar
Trong, D.D., Tuan, N.H.: A nonhomogeneous backward heat problem: regularization and error estimates. Electron. J. Differ. Equ. pages No. 33, 14 (2008)
Tuan, N.H., Hai, D.N.D., Long, L.D., Nguyen, V.T., Kirane, M.: On a Riesz-Feller space fractional backward diffusion problem with a nonlinear source. J. Comput. Appl. Math. 312, 103–126 (2017)
MathSciNet
MATH
Article
Google Scholar
Wang, H., Basu, T.S.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34(5), A2444–A2458 (2012)
MathSciNet
MATH
Article
Google Scholar
Wu, J., Berland, K.M.: Propagators and time-dependent diffusion coefficients for anomalous diffusion. Biophys. J. 95(4), 2049–2052 (2008)
Article
Google Scholar
Xiong, X.-T., Chu-Li, F., Qian, Z.: Two numerical methods for solving a backward heat conduction problem. Appl. Math. Comput. 179(1), 370–377 (2006)
MathSciNet
MATH
Google Scholar
Xiong, X., Li, J., Wen, J.: Some novel linear regularization methods for a deblurring problem. Inverse Probl. Imaging 11(2), 403–426 (2017)
MathSciNet
MATH
Article
Google Scholar
Yang, F., Li, X.-X., Li, D.-G., Wang, L.: The simplified Tikhonov regularization method for solving a Riesz-Feller space-fractional backward diffusion problem. Math. Comput. Sci. 11(1), 91–110 (2017)
MathSciNet
MATH
Article
Google Scholar
Zheng, G.H., Wei, T.: Two regularization methods for solving a Riesz-Feller space-fractional backward diffusion problem. Inverse Probl. 26(11), 115017, 22 (2010)
Zheng, G.-H.: Solving the backward problem in Riesz-Feller fractional diffusion by a new nonlocal regularization method. Appl. Numer. Math. 135, 99–128 (2019)
MathSciNet
MATH
Article
Google Scholar
Zheng, G.-H., Zhang, Q.-G.: Recovering the initial distribution for space-fractional diffusion equation by a logarithmic regularization method. Appl. Math. Lett. 61, 143–148 (2016)
MathSciNet
MATH
Article
Google Scholar
Zheng, G.-H., Zhang, Q.-G.: Determining the initial distribution in space-fractional diffusion by a negative exponential regularization method. Inverse Probl. Sci. Eng. 25(7), 965–977 (2017)
MathSciNet
MATH
Article
Google Scholar
Zheng, G.-H., Zhang, Q.-G.: Solving the backward problem for space-fractional diffusion equation by a fractional Tikhonov regularization method. Math. Comput. Simul. 148, 37–47 (2018)
MathSciNet
MATH
Article
Google Scholar