Skip to main content

Determination of Initial Distribution for a Space-Fractional Diffusion Equation with Time-Dependent Diffusivity

Abstract

In the present paper, we devote our aspiration to some initial and final value problems for a class of space-fractional diffusion equation with time-dependent diffusivity factor. For the initial value problem (IVP), we investigate the stability of the solution concerning the data and the fractional order. For the final value problem, we prove the ill-posedness and suggest a filter method to regularize the problem. Explicit convergence rate of Hölder type is established. Finally, several numerical examples based on the finite difference approximation and the discrete Fourier transform are performed to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55(2), 472–495 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  2. Ames, K.A., Payne, L.E.: Continuous dependence on modeling for some well-posed perturbations of the backward heat equation. J. Inequal. Appl. 3(1), 51–64 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Benson, D.A., Meerschaert, M.M., Revielle, J.: Fractional calculus in hydrologic modeling: a numerical perspective. Adv. Water Resources 51, 479–497 (2013)

    Article  Google Scholar 

  4. Carasso, A.S., Sanderson, J.G., Hyman, J.M.: Digital removal of random media image degradations by solving the diffusion equation backwards in time. SIAM J. Numer. Anal. 15(2), 344–367 (1978)

    MathSciNet  MATH  Article  Google Scholar 

  5. Cheng-Wu, L., Hong-Lai, X., Cheng, G., Wen-biao, L.: Modeling and experiments for the time-dependent diffusion coefficient during methane desorption from coal. J. Geophys. Eng. 15(2), 315–329 (2018)

    Article  Google Scholar 

  6. Dang, D.T., Nane, E., Nguyen, D.M., Tuan, N.H.: Continuity of solutions of a class of fractional equations. Potential Anal. 49(3), 423–478 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  7. Dang, D.T., Nguyen, H.T.: Regularization and error estimates for nonhomogeneous backward heat problems. Electron. J. Differ. Equ. No. 4, 10 (2006)

  8. Dudko, O.K., Berezhkovskii, A.M., Weiss, G.H.: Time-dependent diffusion coefficients in periodic porous materials. J. Phys. Chem. B 109(45), 21296–21299 (2005)

    Article  Google Scholar 

  9. Ervin, V.J., Heuer, N., Roop, J.P.: Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation. SIAM J. Numer. Anal. 45(2), 572–591 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  10. Giestas, M., Joyce, A., Pina, H.: The influence of non-constant diffusivities on solar ponds stability. Int. J. Heat Mass Transf. 40(18), 4379–4391 (1997)

    MATH  Article  Google Scholar 

  11. Gorenflo, R., Mainardi, F.: Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1(2), 167–191 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Gorenflo, R., Mainardi, F.: Random walk models approximating symmetric space-fractional diffusion processes. In: Problems and Methods in Mathematical Physics, pp. 120–145. Springer (2001)

  13. Hanyga, A.: Multidimensional solutions of space-fractional diffusion equations. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457(2016), 2993–3005 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  14. Hào, D.N., Van Duc, N.: Stability results for the heat equation backward in time. J. Math. Anal. Appl. 353(2), 627–641 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  15. Hào, D.N., Van Duc, N., Sahli, H.: A non-local boundary value problem method for parabolic equations backward in time. J. Math. Anal. Appl. 345(2), 805–815 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  16. Hao, Z., Zhang, Z.: Optimal regularity and error estimates of a spectral Galerkin method for fractional advection-diffusion-reaction equations. SIAM J. Numer. Anal. 58(1), 211–233 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  17. Huang, Y., Oberman, A.: Numerical methods for the fractional Laplacian: a finite difference-quadrature approach. SIAM J. Numer. Anal. 52(6), 3056–3084 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  18. Karimi, M., Moradlou, F., Hajipour, M.: Regularization technique for an inverse space-fractional backward heat conduction problem. J. Sci. Comput. 83(2), Paper No. 37, 29 (2020)

  19. Khanh, T.Q., Van Hoa, N.: On the axisymmetric backward heat equation with non-zero right hand side: regularization and error estimates. J. Comput. Appl. Math. 335, 156–167 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  20. Khieu, T.T., Vo, H.-H.: Recovering the historical distribution for nonlinear space-fractional diffusion equation with temporally dependent thermal conductivity in higher dimensional space. J. Comput. Appl. Math. 345, 114–126 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  21. Liu, Q., Liu, F., Turner, I., Anh, V.: Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method. J. Comput. Phys. 222(1), 57–70 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  22. Minh, T.L., Khieu, T.T., Khanh, T.Q., Vo, H.-H.: On a space fractional backward diffusion problem and its approximation of local solution. J. Comput. Appl. Math. 346, 440–455 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  23. Miranker, W.L.: A well posed problem for the backward heat equation. Proc. Am. Math. Soc. 12, 243–247 (1961)

    MathSciNet  MATH  Article  Google Scholar 

  24. Morita, A., Bagchi, B.: Time dependent diffusion coefficient and the transient dynamics of diffusion controlled bimolecular reactions in liquids: a mode coupling theory analysis. J. Chem. Phys. 110(17), 8643–8652 (1999)

    Article  Google Scholar 

  25. Payne, L.E.: Improperly posed problems in partial differential equations. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1975. Regional Conference Series in Applied Mathematics, No. 22

  26. Petersen, J.S., Mack, C.A., Sturtevant, J.L., Byers, J.D., Miller, D.A.: Nonconstant diffusion coefficients: short description of modeling and comparison to experimental results. In: Advances in Resist Technology and Processing XII, vol. 2438, pp. 167–181. International Society for Optics and Photonics (1995)

  27. Rais, D., Mensik, M., Paruzel, B., Toman, P., Pfleger, J.: Concept of the time-dependent diffusion coefficient of polarons in organic semiconductors and its determination from time-resolved spectroscopy. J. Phys. Chem. C 122(40), 22876–22883 (2018)

    Article  Google Scholar 

  28. Renardy, M., Hrusa, W.J., Nohel, J.A.: Mathematical problems in viscoelasticity, volume 35 of Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientific & Technical, Harlow (1987)

  29. Saadatmandi, A., Dehghan, M.: A tau approach for solution of the space fractional diffusion equation. Comput. Math. Appl. 62(3), 1135–1142 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  30. Schurr, J.M.: Time-dependent diffusion coefficients. J. Chem. Phys. 74(2), 1428–1430 (1981)

    Article  Google Scholar 

  31. Seshadri, V., West, B.J.: Fractal dimensionality of Lévy processes. Proc. Nat. Acad. Sci. USA 79(14), 4501–4505 (1982)

    MATH  Article  Google Scholar 

  32. Shen, S., Liu, F.: Error analysis of an explicit finite difference approximation for the space fractional diffusion equation with insulated ends. ANZIAM J. 46(C):C871–C887 (2004/05)

  33. Shi, C., Wang, C., Wei, T.: Convolution regularization method for backward problems of linear parabolic equations. Appl. Numer. Math. 108, 143–156 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  34. Skaggs, T.H., Kabala, Z.J.: Recovering the history of a groundwater contaminant plume: method of quasi-reversibility. Water Resources Res. 31(11), 2669–2673 (1995)

    Article  Google Scholar 

  35. Sun, H.G., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.Q.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018)

    MATH  Article  Google Scholar 

  36. Tautenhahn, U., Schröter, T.: On optimal regularization methods for the backward heat equation. Z. Anal. Anwendungen 15(2), 475–493 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  37. Tian, W.Y., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84(294), 1703–1727 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  38. Trong, D.D., Hai, D.N.D., Minh, N.D.: Stepwise regularization method for a nonlinear Riesz-Feller space-fractional backward diffusion problem. J. Inverse Ill-Posed Probl. 27(6), 759–775 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  39. Trong, D.D., Tuan, N.H.: A nonhomogeneous backward heat problem: regularization and error estimates. Electron. J. Differ. Equ. pages No. 33, 14 (2008)

  40. Tuan, N.H., Hai, D.N.D., Long, L.D., Nguyen, V.T., Kirane, M.: On a Riesz-Feller space fractional backward diffusion problem with a nonlinear source. J. Comput. Appl. Math. 312, 103–126 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  41. Wang, H., Basu, T.S.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34(5), A2444–A2458 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  42. Wu, J., Berland, K.M.: Propagators and time-dependent diffusion coefficients for anomalous diffusion. Biophys. J. 95(4), 2049–2052 (2008)

    Article  Google Scholar 

  43. Xiong, X.-T., Chu-Li, F., Qian, Z.: Two numerical methods for solving a backward heat conduction problem. Appl. Math. Comput. 179(1), 370–377 (2006)

    MathSciNet  MATH  Google Scholar 

  44. Xiong, X., Li, J., Wen, J.: Some novel linear regularization methods for a deblurring problem. Inverse Probl. Imaging 11(2), 403–426 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  45. Yang, F., Li, X.-X., Li, D.-G., Wang, L.: The simplified Tikhonov regularization method for solving a Riesz-Feller space-fractional backward diffusion problem. Math. Comput. Sci. 11(1), 91–110 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  46. Zheng, G.H., Wei, T.: Two regularization methods for solving a Riesz-Feller space-fractional backward diffusion problem. Inverse Probl. 26(11), 115017, 22 (2010)

  47. Zheng, G.-H.: Solving the backward problem in Riesz-Feller fractional diffusion by a new nonlocal regularization method. Appl. Numer. Math. 135, 99–128 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  48. Zheng, G.-H., Zhang, Q.-G.: Recovering the initial distribution for space-fractional diffusion equation by a logarithmic regularization method. Appl. Math. Lett. 61, 143–148 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  49. Zheng, G.-H., Zhang, Q.-G.: Determining the initial distribution in space-fractional diffusion by a negative exponential regularization method. Inverse Probl. Sci. Eng. 25(7), 965–977 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  50. Zheng, G.-H., Zhang, Q.-G.: Solving the backward problem for space-fractional diffusion equation by a fractional Tikhonov regularization method. Math. Comput. Simul. 148, 37–47 (2018)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tra Quoc Khanh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Theodore E. Simos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luan, T.N., Khanh, T.Q. Determination of Initial Distribution for a Space-Fractional Diffusion Equation with Time-Dependent Diffusivity. Bull. Malays. Math. Sci. Soc. 44, 3461–3487 (2021). https://doi.org/10.1007/s40840-021-01118-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-021-01118-7

Keywords

  • Space-fractional diffusion equation
  • Ill-posed problem
  • Filter regularization
  • Lipschitz continuity

Mathematics Subject Classification

  • 65N20
  • 35R25
  • 47J06
  • 26A33