On the Balaban Index of Chain Graphs


The Balaban index and sum-Balaban index of a connected (molecular) graph G are defined as

$$\begin{aligned} J(G)&=\frac{m}{\mu +1} \sum _{uv\in E(G)}\frac{1}{\sqrt{\sigma _{G}(u)\sigma _{G}(v)}}~ \text{ and }\\ SJ(G)&=\frac{m}{\mu +1} \sum _{uv\in E(G)}\frac{1}{\sqrt{\sigma _{G}(u)+\sigma _{G}(v)}}, \end{aligned}$$

respectively, where m is the number of edges, \(\mu \) is the cyclomatic number, \(\sigma _G(u)\) is the sum of distances between vertex u and all other vertices of G. In this paper, we establish that

$$\begin{aligned} K\left( DS(n-3,\,1)\right)>K\left( DS(n-4,\,2)\right)>\cdots >K \left( DS\left( \left\lceil \frac{n}{2}\right\rceil -1,\, \left\lfloor \frac{n}{2}\right\rfloor -1\right) \right) \end{aligned}$$

\((K=J,\,SJ),\) where \(DS(p,\,q)\) is a double star on \(n\,(=p+q+2,\,p\ge q)\) vertices. As an application, we determine the extremal graphs of the Balaban index and the sum-Balaban index in the class of chain graphs G on n vertices, where G is a tree or a unicyclic graph. Finally, we give an open problem on Balaban (sum-Balaban) index of connected chain graphs.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. 1.

    Balaban, A.T.: Highly discriminating distance-based topological index. Chem. Phys. Lett. 89, 399–404 (1982)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Balaban, A.T.: Topological indices based on topological distances in molecular graphs. Pure Appl. Chem. 55, 199–206 (1983)

    Article  Google Scholar 

  3. 3.

    Balaban, A.T.: Chemical graphs. Part 48. Topological index \(J\) for heteroatom-containing molecules taking into account periodicities of element properties. MATCH Commun. Math. Comput. Chem. 21, 115–122 (1986)

    Google Scholar 

  4. 4.

    Balaban, A.T., Khadikar, P.V., Aziz, S.: Comparison of topological indices based on iterated ‘sum’ versus ‘product’ operations. Iran. J. Math. Chem. 1, 43–67 (2010)

    MATH  Google Scholar 

  5. 5.

    Das, K.C., Alazemi, A., Andelic, M.: On energy and Laplacian energy of chain graphs. Discrete Appl. Math. 284, 391–400 (2020)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Das, K.C., Xu, K.: On relation between Kirchhoff index, Laplacian-energy-like invariant and Laplacian energy of graphs. Bull. Malays. Math. Sci. Soc. 39, S59–S75 (2016)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Devillers, J., Balaban, A.T. (eds.): Topological Indices and Related Descriptors in \(QSAR\) and \(QSPR\). Gordon and Breach, Amsterdam (1999)

    Google Scholar 

  8. 8.

    Diudea, M.V., Florescu, M.S., Khadikar, P.V.: Molecular Topology and its Applications, p. 57. EfiCon Press, Bucarest (2006)

    Google Scholar 

  9. 9.

    Deng, H.: On the sum-Balaban index. MATCH Commun. Math. Comput. Chem. 66, 273–284 (2011)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Deng, H.: On the Balaban index of trees. MATCH Commun. Math. Comput. Chem. 66, 253–260 (2011)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Grassy, G., Calas, B., Yasri, A., Lahana, R., Woo, J., Iyer, S., Kaczorek, M., Floc’h, R., Buelow, R.: Computer-assisted rational design of immuno-suppressive compounds. Nat. Biotechnol. 16, 748–752 (1998)

    Article  Google Scholar 

  12. 12.

    Hua, H., Das, K.C., Wang, H.: On atom-bond connectivity index of graphs. J. Math. Anal. Appl. 479, 1099–1114 (2019)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Ivanciuc, O., Ivanciuc, T., Balaban, A.T.: Design of topological indices. Part 10. Parameters based on electronegativity and vovalent radius for the computation of molecular graph descriptors for heteroatom-containing molecules. J. Chem. Inf. Comput. Sci. 38, 395–495 (1998)

    Article  Google Scholar 

  14. 14.

    Knor, M., Škrekovski, R., Tepeh, A.: Mathematical aspects of Balaban index. MATCH Commun. Math. Comput. Chem. 79, 685–716 (2018)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Lei, H., Yang, H.: Bounds for the sum-Balaban index and (revised) Szeged index of regular graphs. Appl. Math. Comput. 268, 1259–1266 (2015)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Li, S., Zhou, B.: On the Balaban index of trees. Ars Comb. 101, 503–512 (2011)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Li, F., Ye, Q., Rada, J.: The augmented Zagreb indices of fluoranthene-type benzenoid systems. Bull. Malays. Math. Sci. Soc. 42, 1119–1141 (2019)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Liu, J.-B., Wang, C., Wang, S., Wei, B.: Zagreb indices and multiplicative Zagreb indices of eulerian graphs. Bull. Malays. Math. Sci. Soc. 42, 67–78 (2019)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Liu, M., Yao, Y., Das, K.C.: Extremal results for cacti. Bull. Malays. Math. Sci. Soc. 43, 2783–2798 (2020)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Randić, M.: On the characterization of molecular branching. J. Am. Chem. Soc. 97, 6609–6615 (1975)

    Article  Google Scholar 

  21. 21.

    Sun, L., Wu, J., Cai, H., Luo, Z.: The Wiener index of \(r\)-uniform hypergraphs. Bull. Malays. Math. Sci. Soc. 40, 1093–1113 (2017)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Todeschini, R., Consonni, V.: Handbook of Molecular Descriptors. Wiley-VCH, Weinheim (2000)

    Google Scholar 

  23. 23.

    Trinajstić, N.: Chemical Graph Theory, p. 246. CRC Press, Boca Raton, FL (1992)

    Google Scholar 

  24. 24.

    Wiener, H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)

    Article  Google Scholar 

  25. 25.

    Xing, R., Zhou, B., Graovac, A.: On sum-Balaban index. Ars Comb. 104, 211–223 (2012)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Zhou, B., Trinajstić, N.: Bounds on the Balaban index. Croat. Chem. Acta 81, 319–323 (2008)

    Google Scholar 

Download references


The author is much grateful to two anonymous referees for their valuable comments on our paper, which have considerably improved the presentation of this paper.

Author information



Corresponding author

Correspondence to Kinkar Chandra Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Xueliang Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, K.C. On the Balaban Index of Chain Graphs. Bull. Malays. Math. Sci. Soc. (2020). https://doi.org/10.1007/s40840-020-01054-y

Download citation


  • Molecular graph
  • Balaban index
  • Sum-Balaban index

AMS Classification

  • 05C07