Skip to main content
Log in

Finite-Time Control Analysis of Nonlinear Fractional-Order Systems Subject to Disturbances

Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

This paper deals with finite-time control problem for nonlinear fractional-order systems with order \(0<\alpha <1\). We first derive sufficient conditions for finite-time stabilization based on Caputo derivative calculus and Lyapunov-like function method. Then, by introducing a new type of the cost control function, we study guaranteed cost control problem for such systems. In terms of linear matrix inequalities, an explicit expression for state and output feedback controllers is given to make the closed-loop system finite-time stable and to guarantee an adequate cost level of the performance. The proposed method is applied to analyze the finite-time control problem for a class of linear uncertain FOSs. Finally, numerical examples are given to illustrate the validity and effectiveness of the proposed results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  2. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Application of Fractional Differential Equations. Elsevier, New York (2006)

    MATH  Google Scholar 

  3. Li, M., Wang, J.R., ORegan, D.: Existence and Ulams stability for conformable fractional differential equations with constant coefficients. Bull. Malay. Math. Sci. Soc. 42(2), 1791–1812 (2019)

    Article  MathSciNet  Google Scholar 

  4. Li, M., Wang, J.R.: Finite time stability of fractional delay differential equations. Appl. Math. Lett. 64, 170–176 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zeeshan, A., Zada, A., Shah, K.: Ulam stability to a toppled systems of nonlinear implicit fractional-order boundary value problem. Bound. Value Probl. 175, 1–16 (2018)

    MathSciNet  Google Scholar 

  6. Shah, K., Arshad, A., Samia, B.: Hyers–Ulam stability analysis to implicit Cauchy problem of fractional differential equations with impulsive conditions. Math. Methods Appl. Sci. 41(17), 8329–8343 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhang, R., Tian, G., Yang, S., Cao, H.: Stability analysis of a class of fractional order nonlinear systems with order lying in (0, 2). ISA Trans. 56, 102–110 (2015)

    Article  Google Scholar 

  8. Lenka, B.K., Banerjee, S.: Asymptotic stability and stabilization of a class of nonautonomous fractional order systems. Nonlinear Dyn. 85, 167–177 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yang, X., Li, C., Huang, T., Song, Q.: Mittag–Leffler stability analysis of nonlinear fractional-order systems with impulses. Appl. Math. Comput. 293, 416–422 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Ali, Z., Zada, A., Shah, K.: On Ulams stability for a coupled systems of nonlinear implicit fractional differential equations. Bull. Malay. Math. Sci. Soc. 42(5), 2681–2699 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hasib, K., Rahmat, A.K., Chen, W., Shah, K.: Stability analysis and a numerical scheme for fractional Klein Gordon equations. Math. Methods Appl. Sci. 41, 723–732 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Sher, M., Shah, K., Feckan, M., Rahmat, A.K.: Qualitative analysis of multi-terms fractional order delay differential equations via the topological degree theory. Mathematics 218(8), 1–13 (2020)

    Google Scholar 

  13. Thuan, M.V., Huong, D.C.: New results on stabilization of fractional-order nonlinear systems via an LMI approach. Asian J. Control 20, 1541–1550 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin, C., Chen, B., Shi, P., Yu, J.P.: Necessary and sufficient conditions of observer-based stabilization for a class of fractional-order descriptor systems. Syst. Control Lett. 112, 31–35 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lan, Y.H., Huang, H.X., Zhou, Y.: Observer-based robust control of a (\( 1 < \alpha < 2 \)) fractional-order uncertain systems: a linear matrix inequality approach. IET Control Theory Appl. 62(2), 229–234 (2012)

    MathSciNet  Google Scholar 

  16. Huang, S., Wang, B.: Stability and stabilization of a class of fractional-order nonlinear systems for \(0 < a < 2\). Nonlinear Dyn. 88, 973–984 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Weiss, L., Infante, F.: On the stability of systems defined over finite time interval. Proc. Natl. Acad. Sci. 54, 44–48 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  18. Amato, F., Ariola, M., Dorato, P.: Finite-time control of linear systems subject to parametric uncertainties and disturbances. Automatica 37(9), 1459–1463 (2001)

    Article  MATH  Google Scholar 

  19. Zhao, S., Sun, J., Liu, L.: Finite-time stability of linear time-varying singular systems with impulsive effects. Int. J. Control 81(11), 1824–1829 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tuan, L.A., Phat, V.N.: Existence of solutions and finite-time stability for nonlinear singular discrete-time delay neural network-based systems. Bull. Malays. Math. Sci. Soc. 42, 2423–2442 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lazarevic, M.P., Spasic, A.M.: Finite-time stability analysis of fractional order time-delay systems: Gronwall’s approach. Math. Comput. Model. 49, 475–481 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Omar, N., Nagy, A.M., Makhlouf, A.B.: Finite-time stability of linear fractional-order time-delay systems. Int. J. Robust Nonl. Control 29, 180–187 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, F., Chen, D., Zhang, X., Wu, Y.: Finite-time stability of a class of nonlinear fractional-order system with the discrete time delay. Int. J. Syst. Science 48, 984–993 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, L., Song, Q., Liu, Y., Zhao, Z., Alsaadi, F.E.: Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with both leakage and time-varying delays. Neurocomputing 245, 86–101 (2017)

    Article  Google Scholar 

  25. Naifar, O., Nagy, A.M., Makhlouf, A.B.: Finite-time stability of linear fractional-order time-delay systems. Int. J. Robust Nonl. Control. 29, 180–187 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chang, S.S.L., Peng, T.K.C.: Adaptive guaranteed cost control of systems with uncertain parameters. IEEE Trans. Autom. Control 17, 474–483 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  27. Park, J.H.: Delay-dependent criterion for guaranteed cost control of neutral delay systems. J. Optim. Theory Appl. 124, 491–502 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Niamsup, P., Phat, V.N.: A new result on finite-time control of singular linear time-delay systems. Appl. Math. Lett. 60, 1–7 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yan, Z., Park, J.H., Zhang, W.: Finite-time guaranteed cost control for Itô Stochastic Markovian jump systems with incomplete transition rates. Int. J. Robust Nonl. Control 27, 66–83 (2017)

    Article  MATH  Google Scholar 

  30. Li, C., Deng, W.: Remarks on fractional derivatives. Appl. Math. Comput. 187(2), 777–784 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Vainikko, G.: Which functions are fractionally differentiable. J. Anal. Appl. 35, 465–487 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Băleanu, D., Mustafa, O.G.: On the global existence of solutions to a class of fractional differential equations. Comput. Math. Appl. 59, 1835–1841 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Camacho, N.A., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonl. Sci. Numer. Simul. 19, 2951–2957 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Trinh, H., Tuan, H.T.: Stability of fractional-order nonlinear systems by Lyapunov direct method. IET Control Theory Appl. 12, 2417–2422 (2018)

    Article  MathSciNet  Google Scholar 

  35. Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  36. Gahinet, P., Nemirovskii, A., Laub, J., Chilali, M.: LMI Control Toolbox For Use with MATLAB. The MathWorks Inc, Natick (1995)

    Google Scholar 

  37. Song, J., He, S.: Robust finite-time \(H_{\infty }\) control for one-sided Lipschitz nonlinear systems via state feedback and output feedback. J. Frankl. Inst. 352(8), 3250–3266 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Ma, Y., Wu, B., Wang, Y.E.: Finite-time stability and finite-time boundedness of fractional order linear systems. Neurocomputing 173, 2076–2082 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The research of P. Niamsup is supported by the Chiang Mai University, Thailand. The research of V.N. Phat and M.V. Thuan is supported by the Vietnam Institute for Advanced Study in Mathematics (VIASM). The authors would like to thank the Editor-in-Chief and anonymous reviewers for their valuable comments and suggestions, which allow us to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vu N. Phat.

Additional information

Communicated by See Keong Lee.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thuan, M.V., Niamsup, P. & Phat, V.N. Finite-Time Control Analysis of Nonlinear Fractional-Order Systems Subject to Disturbances. Bull. Malays. Math. Sci. Soc. 44, 1425–1441 (2021). https://doi.org/10.1007/s40840-020-01020-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-020-01020-8

Keywords

Mathematics Subject Classification

Navigation