Skip to main content
Log in

Convergence of Dissipative-Like Dynamics and Algorithms Governed by Set-Valued Nonexpansive Mappings

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In this paper, we consider a differential inclusion governed by a set-valued nonexpansive mapping and study the asymptotic behavior (weak and strong convergence) of its solutions with various assumptions on this mapping. Then for a set-valued nonexpansive mapping, we define the corresponding resolvent (proximal) operator as a set-valued mapping and study some of its elementary properties. Subsequently, we apply the resolvent operator to state the implicit discretization of the differential inclusion and study the asymptotic behavior of its solutions which yields similar convergence results as in the continuous case. This provides an algorithm for approximating a fixed point of a set-valued nonexpansive mapping which extends the classical proximal point algorithm. An application to variational inequalities and a numerical comparison with another iterative method for approximating a fixed point of set-valued nonexpansive mappings are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aubin, J.P., Siegel, J.: Fixed points and stationary points of dissipative multivalued maps. Proc. Am. Math. Soc. 78, 391–398 (1980)

    Article  MathSciNet  Google Scholar 

  2. Baillon, J.B.: Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert. C. R. Acad. Sci. Paris 280, 1511–1514 (1975)

    MathSciNet  MATH  Google Scholar 

  3. Baillon, J.B., Brézis, H.: Une remarque sur le comportement asymptotique des semi-groupes non linéaires. Houst. J. Math. 2, 5–7 (1976)

    MATH  Google Scholar 

  4. Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Hollund Moth. Stud. 5, 182 (1973)

    MATH  Google Scholar 

  5. Brézis, H., Lions, P.L.: Produits infinis de résolvantes. Isr. J. Math. 29, 329–345 (1978)

    Article  Google Scholar 

  6. Bruck, R.E.: Asymptotic convergence of nonlinear contraction semigroups in Hilbert space. J. Funct. Anal. 18, 15–26 (1975)

    Article  MathSciNet  Google Scholar 

  7. Farkhi, E., Donchev, T., Baier, R.: Existence of solutions for nonconvex differential inclusions of monotone type. C. R. l’Acad. Bul. Sci. 67, 323–330 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Glicksberg, I.L.: A further generalization of the Kakutani fixed point theorem with applications to Nash equilibrium points. Proc. Am. Math. Soc. 3, 170–174 (1952)

    MathSciNet  MATH  Google Scholar 

  9. Jung, J.S.: Strong convergence theorems for multivalued nonexpansive nonself-mappings in Banach spaces. Nonlinear Anal. TMA 66, 2345–2354 (2007)

    Article  MathSciNet  Google Scholar 

  10. Kakutani, S.: A generalization of Brouwer’s fixed point theorem. Duke Math. J. 8, 457–459 (1941)

    Article  MathSciNet  Google Scholar 

  11. Khatibzadeh, H., Mohebbi, V.: On the iterations of a sequence of strongly quasi-nonexpansive mappings with applications. Numer. Funct. Anal. Optim. 41, 231–256 (2020)

    Article  MathSciNet  Google Scholar 

  12. Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  13. Lami Dozo, E.: Multivalued nonexpansive mappings and Opial’s condition. Proc. Am. Math. Soc. 38, 286–292 (1973)

    Article  MathSciNet  Google Scholar 

  14. Lim, T.C.: A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex Banach space. Bull. Am. Math. Soc. 80, 1123–1126 (1974)

    Article  MathSciNet  Google Scholar 

  15. Lopez Acedo, G., Xu, H.K.: Remarks on multivalued nonexpansive mappings. Soochow J. Math. 21, 107–115 (1995)

    MathSciNet  MATH  Google Scholar 

  16. Markin, J.T.: Continuous dependence of fixed point sets. Proc. Am. Math. Soc. 38, 545–547 (1973)

    Article  MathSciNet  Google Scholar 

  17. Morosanu, G.: Nonlinear Evolution Equations and Applications, vol. 26. Reidel, Dordrech (1988)

    MATH  Google Scholar 

  18. Nadler, S.: Multivalued contraction mappings. Pac. J. Math. 30, 475–488 (1969)

    Article  Google Scholar 

  19. Opial, Z.: Weak convergence of the sequence of successive approximation for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)

    Article  MathSciNet  Google Scholar 

  20. Panyanak, B.: Endpoints of multivalued nonexpansive mappings in geodesic spaces. Fixed Point Theory Appl. 2015, 147 (2015)

    Article  MathSciNet  Google Scholar 

  21. Panyanak, B.: Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces. Comput. Math. Appl. 54, 872–877 (2007)

    Article  MathSciNet  Google Scholar 

  22. Pietramala, P.: Convergence of approximating fixed point sets for multivalued nonexpansive mappings. Comment. Math. Univ. Carolin. 32, 697–701 (1991)

    MathSciNet  MATH  Google Scholar 

  23. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  Google Scholar 

  24. Reich, S., Zaslavski, A.J.: Approximating fixed points of contractive set-valued mappings. Commun. Math. Anal. 8, 70–78 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Saejung, S.: Remarks on endpoints of multivalued mappings on geodesic spaces. Fixed Point Theory Appl. 2016, 52 (2016)

    Article  MathSciNet  Google Scholar 

  26. Sastry, K.P.R., Babu, G.V.R.: Convergence of Ishikawa iterates for a multi-valued mapping with a fixed point. Czechoslovak Math. J. 55, 817–826 (2005)

    Article  MathSciNet  Google Scholar 

  27. Shahzad, N., Zegeye, H.: Strong convergence results for nonself multimaps in Banach spaces. Proc. Am. Math. Soc. 136, 539–548 (2008)

    Article  MathSciNet  Google Scholar 

  28. Shahzad, N., Zegeye, H.: On Mann and Ishikawa iteration schemes for multi-valued maps in Banach spaces. Nonlinear Anal. 71, 838–844 (2009)

    Article  MathSciNet  Google Scholar 

  29. Song, Y., Wang, H.: Erratum to “Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces” [Comput. Math. Appl., 54, 872–877 (2007)]. Comput. Math. Appl. 55, 2999–3002 (2008)

    Article  MathSciNet  Google Scholar 

  30. Song, Y., Wang, H.: Convergence of iterative algorithms for multivalued mappings in Banach spaces. Nonlinear Anal. 70, 1547–1556 (2009)

    Article  MathSciNet  Google Scholar 

  31. Smirnov, G.V.: Introduction to the Theory of Differential Inclusions, Graduate Studies in Mathematics, vol. 41. American Mathematical Society, Providence (2002)

    Google Scholar 

  32. von Neumann, J.: Über ein ökonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes. Ergebn. Eines Math. Kolloqu. 8, 73–83 (1937)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referee for their careful observations and valuable comments leading to the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Khatibzadeh.

Additional information

Communicated by Rosihan M. Ali.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatibzadeh, H., Rahimi Piranfar, M. & Rooin, J. Convergence of Dissipative-Like Dynamics and Algorithms Governed by Set-Valued Nonexpansive Mappings. Bull. Malays. Math. Sci. Soc. 44, 1101–1121 (2021). https://doi.org/10.1007/s40840-020-00997-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-020-00997-6

Keywords

Mathematics Subject Classification

Navigation