Abstract
In this paper, we consider a differential inclusion governed by a set-valued nonexpansive mapping and study the asymptotic behavior (weak and strong convergence) of its solutions with various assumptions on this mapping. Then for a set-valued nonexpansive mapping, we define the corresponding resolvent (proximal) operator as a set-valued mapping and study some of its elementary properties. Subsequently, we apply the resolvent operator to state the implicit discretization of the differential inclusion and study the asymptotic behavior of its solutions which yields similar convergence results as in the continuous case. This provides an algorithm for approximating a fixed point of a set-valued nonexpansive mapping which extends the classical proximal point algorithm. An application to variational inequalities and a numerical comparison with another iterative method for approximating a fixed point of set-valued nonexpansive mappings are also presented.
Similar content being viewed by others
References
Aubin, J.P., Siegel, J.: Fixed points and stationary points of dissipative multivalued maps. Proc. Am. Math. Soc. 78, 391–398 (1980)
Baillon, J.B.: Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert. C. R. Acad. Sci. Paris 280, 1511–1514 (1975)
Baillon, J.B., Brézis, H.: Une remarque sur le comportement asymptotique des semi-groupes non linéaires. Houst. J. Math. 2, 5–7 (1976)
Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Hollund Moth. Stud. 5, 182 (1973)
Brézis, H., Lions, P.L.: Produits infinis de résolvantes. Isr. J. Math. 29, 329–345 (1978)
Bruck, R.E.: Asymptotic convergence of nonlinear contraction semigroups in Hilbert space. J. Funct. Anal. 18, 15–26 (1975)
Farkhi, E., Donchev, T., Baier, R.: Existence of solutions for nonconvex differential inclusions of monotone type. C. R. l’Acad. Bul. Sci. 67, 323–330 (2014)
Glicksberg, I.L.: A further generalization of the Kakutani fixed point theorem with applications to Nash equilibrium points. Proc. Am. Math. Soc. 3, 170–174 (1952)
Jung, J.S.: Strong convergence theorems for multivalued nonexpansive nonself-mappings in Banach spaces. Nonlinear Anal. TMA 66, 2345–2354 (2007)
Kakutani, S.: A generalization of Brouwer’s fixed point theorem. Duke Math. J. 8, 457–459 (1941)
Khatibzadeh, H., Mohebbi, V.: On the iterations of a sequence of strongly quasi-nonexpansive mappings with applications. Numer. Funct. Anal. Optim. 41, 231–256 (2020)
Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)
Lami Dozo, E.: Multivalued nonexpansive mappings and Opial’s condition. Proc. Am. Math. Soc. 38, 286–292 (1973)
Lim, T.C.: A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex Banach space. Bull. Am. Math. Soc. 80, 1123–1126 (1974)
Lopez Acedo, G., Xu, H.K.: Remarks on multivalued nonexpansive mappings. Soochow J. Math. 21, 107–115 (1995)
Markin, J.T.: Continuous dependence of fixed point sets. Proc. Am. Math. Soc. 38, 545–547 (1973)
Morosanu, G.: Nonlinear Evolution Equations and Applications, vol. 26. Reidel, Dordrech (1988)
Nadler, S.: Multivalued contraction mappings. Pac. J. Math. 30, 475–488 (1969)
Opial, Z.: Weak convergence of the sequence of successive approximation for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)
Panyanak, B.: Endpoints of multivalued nonexpansive mappings in geodesic spaces. Fixed Point Theory Appl. 2015, 147 (2015)
Panyanak, B.: Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces. Comput. Math. Appl. 54, 872–877 (2007)
Pietramala, P.: Convergence of approximating fixed point sets for multivalued nonexpansive mappings. Comment. Math. Univ. Carolin. 32, 697–701 (1991)
Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)
Reich, S., Zaslavski, A.J.: Approximating fixed points of contractive set-valued mappings. Commun. Math. Anal. 8, 70–78 (2010)
Saejung, S.: Remarks on endpoints of multivalued mappings on geodesic spaces. Fixed Point Theory Appl. 2016, 52 (2016)
Sastry, K.P.R., Babu, G.V.R.: Convergence of Ishikawa iterates for a multi-valued mapping with a fixed point. Czechoslovak Math. J. 55, 817–826 (2005)
Shahzad, N., Zegeye, H.: Strong convergence results for nonself multimaps in Banach spaces. Proc. Am. Math. Soc. 136, 539–548 (2008)
Shahzad, N., Zegeye, H.: On Mann and Ishikawa iteration schemes for multi-valued maps in Banach spaces. Nonlinear Anal. 71, 838–844 (2009)
Song, Y., Wang, H.: Erratum to “Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces” [Comput. Math. Appl., 54, 872–877 (2007)]. Comput. Math. Appl. 55, 2999–3002 (2008)
Song, Y., Wang, H.: Convergence of iterative algorithms for multivalued mappings in Banach spaces. Nonlinear Anal. 70, 1547–1556 (2009)
Smirnov, G.V.: Introduction to the Theory of Differential Inclusions, Graduate Studies in Mathematics, vol. 41. American Mathematical Society, Providence (2002)
von Neumann, J.: Über ein ökonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes. Ergebn. Eines Math. Kolloqu. 8, 73–83 (1937)
Acknowledgements
The authors are grateful to the anonymous referee for their careful observations and valuable comments leading to the improvement of the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Rosihan M. Ali.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Khatibzadeh, H., Rahimi Piranfar, M. & Rooin, J. Convergence of Dissipative-Like Dynamics and Algorithms Governed by Set-Valued Nonexpansive Mappings. Bull. Malays. Math. Sci. Soc. 44, 1101–1121 (2021). https://doi.org/10.1007/s40840-020-00997-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40840-020-00997-6
Keywords
- Set-valued nonexpansive mapping
- Differential inclusion
- Asymptotic behavior
- Resolvent
- Proximal point algorithm