Skip to main content
Log in

Superconvergence Analysis of Anisotropic FEMs for Time Fractional Variable Coefficient Diffusion Equations

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In this paper, based on Alikhanov’s L2-\(1_\sigma \) high-order approximation and anisotropic finite element methods, a fully discrete scheme for time fractional variable coefficient diffusion equations on anisotropic meshes is presented. Firstly, we prove that the discrete scheme is unconditionally stable in \(H^1\)-norm, then the results of convergence in \(L_2\)-norm and superclose in \(H^1\)-norm are derived by combining interpolation with projection, and then, the superconvergence in \(H^1\)-norm is obtained by using interpolation post-processing technique. In addition, it is worth mentioning the key technology of combining interpolation and projection. If interpolation or projection is used alone, the results of this article cannot be obtained. Finally, numerical examples are provided to verify the correctness of theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yin, X., Zhou, S., Siddique, M.: Fractional nonlinear anisotropic diffusion with p-Laplace variation method for image restoration. Multimed. Tools. Appl. 75(8), 4505–4526 (2016)

    Google Scholar 

  2. Zhang, W., Li, J., Yang, Y.: Spatial fractional telegraph equation for image structure preserving denoising. Signal Process. 107, 68–377 (2015)

    Google Scholar 

  3. Shkvarko, Y., Tuxpan, J., Santos, S.: l2–l1 Structured descriptive experiment design regularization based enhancement of fractional SAR imagery. Signal Process. 93(12), 3553–3566 (2013)

    Google Scholar 

  4. Ren, Z., He, C., Zhang, Q.: Fractional order total variation regularization for image super-resolution. Signal Process. 93(9), 2408–2421 (2013)

    Google Scholar 

  5. Wang, L., Zhou, S., Karim, A.: Image zooming technique based on the split Bregman iteration with fractional order variation regularization. Int. Arab J. Inf. Technol. 13(6A), 944–950 (2016)

    Google Scholar 

  6. Gemant, A.: A method of analyzing experimental results obtained from elasto-viscous Bodies. Physics 7(8), 311–317 (1936)

    Google Scholar 

  7. Zhou, Y., Wang, J., Zhang, L.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2016)

    Google Scholar 

  8. Li, Y., Liu, F., Turner, I., Li, T.: Time-fractional diffusion equation for signal smoothing. Appl. Math. Comput. 326, 108–116 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Li, Y., Jiang, M.: Spatial-fractional order diffusion filtering. J. Math. Chem. 56(1), 257–267 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Rabotnov, Y.: Equilibrium of an elastic medium with after-effect. Fract. Calc. Appl. Anal. 17(3), 684–696 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91(1), 134–147 (1971)

    MATH  Google Scholar 

  12. Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. Riv. Nuovo. Cimento. 1(2), 161–198 (1971-1977)

  13. Schumer, R., Benson, D., Meerschaert, M., Wheatcraft, S.: Eulerian derivation of the fractional advection-dispersion equation. J. Contam. Hydrol. 48(1), 69–88 (2001)

    Google Scholar 

  14. Lu, S., Molz, F., Fix, G.: Possible problems of scale dependency in applications of the three-dimensional fractional advection-dispersion equation to natural porous media. Water Resour. Res. 38(9), 4-1–4-7 (2002)

    Google Scholar 

  15. Tarasov, V., Zaslavsky, G.: Fractional Ginzburg–Landau equation for fractal media. Phys. A 354, 249–261 (2005)

    Google Scholar 

  16. Sancho, J., San Miguel, M., Katz, S., Gunton, J.: Analytical and numerical studies of multiplicative noise. Phys. Rev A. 26(3), 1589 (1982)

    Google Scholar 

  17. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier Science Limited, Amsterdam (2006)

    MATH  Google Scholar 

  18. Barkai, E.: CTRW pathways to the fractional diffusion equation. Chem. Phys. 284(1–2), 13–27 (2002)

    Google Scholar 

  19. Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 166(1), 209–219 (2004)

    MathSciNet  MATH  Google Scholar 

  20. Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection-dispersion models. Comput. Math. Appl. 64(10), 2990–3007 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Liu, F., Meerschaert, M., McGough, R., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time fractional wave equations. Fract. Calc. Appl. 16(1), 9–25 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Lyu, P., Vong, S., Wang, Z.: A finite difference method for boundary value problems of a caputo fractional differential equation. East Asia. J. Appl. Math. 7(4), 752–766 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Li, H., Wu, X., Zhang, J.: Numerical solution of the time-fractional sub-diffusion equation on an unbounded domain in two-dimensional space. East Asia. J. Appl. Math. 7(3), 439–454 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Zeng, F., Li, C., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37(1), A55–A78 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Zhang, H., Liu, F., Anh, V.: Garlerkin finite element approximations of symmetric space-fractional partial differential equations. Appl. Math. Comput. 217(6), 2534–2545 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51(1), 445–466 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Zheng, M., Liu, F., Turner, I., Anh, V.: A novel high order space-time spectral method for the time-fractional Fokker-Planck equation. SIAM J. Sci. Comput. 37(2), A701–A724 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Liu, Q., Liu, F., Gu, Y., Zhuang, P., Chen, J., Turner, I.: A meshless method based on point interpolation method (PIM) for the space fractional diffusion equation. Appl. Math. Comput. 256, 930–938 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Mustapha, K., Abdallah, B., Furati, K.: A discontinuous Petrov–Galerkin method for time-fractional diffusion problems. SIAM J. Numer. Anal. 52(5), 2512–2529 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Murio, D.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56(4), 1138–1145 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Ren, J., Sun, Z., Zhao, X.: Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 232(1), 456–467 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Liu, Q., Gu, Y., Zhuang, P., Liu, F., Nie, Y.: An implicit RBF meshless approach for time fractional diffusion equations. Comput. Mech. 48(1), 1–12 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Gu, Y., Zhuang, P., Liu, Q.: An advanced meshless method for time fractional diffusion equation. Int. J. Comput. Meth. 8(04), 653–665 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Chen, H., Lü, S., Chen, W.: Spectral and pseudo spectral approximations for the time fractional diffusion equation on an unbounded domain. J. Comput. Appl. Math. 304, 43–56 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Alikhanov, A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Zhang, Y., Sun, Z., Wu, H.: Error estimates of Crank-Nicolson-type difference schemes for the subdiffusion equation. SIAM J. Numer. Anal. 49(6), 2302–2322 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35(2), 561–582 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Zeng, F., Li, C., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37(1), A55–A78 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Zhao, Y., Zhang, Y., Shi, D., Liu, F., Turner, I.: Superconvergence analysis of nonconforming finite element method for two-dimensional time fractional diffusion equations. Appl. Math. Lett. 59, 38–47 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Zhao, Y., Chen, P., Bu, W., Liu, X., Tang, Y.: Two mixed finite element methods for time-fractional diffusion equations. J. Sci. Comput. 70(1), 407–428 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Shi, D., Zhu, H.: The superconvergence analysis of an anisotropic finite element. J. Syst. Sci. Complex. 18(4), 478–487 (2005)

    MathSciNet  MATH  Google Scholar 

  44. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1984)

    MATH  Google Scholar 

  45. Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement. Elsevier, Amsterdam (2006)

    Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Nos. 11971416, 11771438), the Specialized Research Fund for State Key Laboratory of Space Weather (No. 201916), the Key Scientific Research Projects in Universities of Henan Province (No. 19B110013), the Program for Scientific and Technological Innovation Talents in Universities of Henan Province (No. 19HASTIT025) and Natural Science Foundation of Ningxia (No. NZ15041). We express our gratitude to Prof. Fawang Liu for his valuable suggestion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanmin Zhao.

Additional information

Communicated by Theodore E. Simos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Zhao, Y., Wang, F. et al. Superconvergence Analysis of Anisotropic FEMs for Time Fractional Variable Coefficient Diffusion Equations. Bull. Malays. Math. Sci. Soc. 43, 4411–4429 (2020). https://doi.org/10.1007/s40840-020-00929-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-020-00929-4

Keywords

Mathematics Subject Classification

Navigation