Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Nonlinear-evolution equations of physical significance. Phys. Rev. Lett. 31, 125–127 (1973)
MathSciNet
Article
Google Scholar
Albeverio, S., Hryniv, R., Mykytyuk, Y.: Inverse spectral problems for Sturm–Liouville operators in impedance form. J. Funct. Anal. 222, 143–177 (2005)
MathSciNet
Article
Google Scholar
Aliev, Z.S.: Basis properties in \(L_p\) of systems of root functions of a spectral problem with spectral parameter in a boundary condition. Differ. Equ. 47(6), 766–777 (2011)
MathSciNet
Article
Google Scholar
Aliev, Z.S., Dunyamalieva, A.A.: Defect basis property of a system of root functions of a Sturm–Liouville problem with spectral parameter in the boundary conditions. Differ. Equ. 51(10), 1249–1266 (2015)
MathSciNet
Article
Google Scholar
Aliyev, Z.S., Guliyeva, S.B.: Properties of natural frequencies and harmonic bending vibrations of a rod at one end of which is concentrated inertial load. J. Differ. Equ. 263(9), 5830–5845 (2017)
MathSciNet
Article
Google Scholar
Aliyev, Z.S., Mamedova, G.M.: Some global results for nonlinear Sturm–Liouville problems with spectral parameter in the boundary condition. Ann. Polon. Math. 115(1), 75–87 (2015)
MathSciNet
Article
Google Scholar
Aliyev, Z.S., Manafova, P.R.: Oscillation theorems for the Dirac operator with spectral parameter in the boundary condition. Electron. J. Qual. Theory Differ. Equ. 115, 1–10 (2016)
MathSciNet
MATH
Google Scholar
Aliev, Z.S., Rzayeva, H.S.: Oscillation properties for the equation of the relativistic quantum theory. Appl. Math. Comput. 271, 308–316 (2015)
MathSciNet
MATH
Google Scholar
Aliev, Z.S., Rzayeva, H.S.: Global bifurcation for nonlinear Dirac problems. Electron. J. Qual. Theory Differ. Equ. 46, 1–14 (2016)
MathSciNet
Google Scholar
Altinisik, N., Kadakal, M., Mukhtarov, O.: Eigenvalues and eigenfunctions of discontinuous Sturm–Liouville problems with eigenparameter-dependent boundary conditions. Acta Math. Hungar. 102, 159–175 (2004)
MathSciNet
Article
Google Scholar
Amirov, R.K., Keskin, B., Ozkan, A.S.: Direct and inverse problems for the Dirac operator with a spectral parameter linearly contained in a boundary condition. Ukr. Math. J. 61, 1365–1379 (2009)
MathSciNet
Article
Google Scholar
Annaby, M.H., Tharwat, M.M.: On sampling and Dirac systems with eigenparameter in the boundary conditions. J. Appl. Math. Comput. 36, 291–317 (2011)
MathSciNet
Article
Google Scholar
Atkinson, F.V.: Discrete and Continuous Boundary Problems. Academic Press, New York (1964)
MATH
Google Scholar
Binding, P.A., Browne, P.J., Seddighi, K.: Sturm–Liouville problems with eigenparameter dependent boundary conditions. Proc. Edinb. Math. Soc. 37, 57–72 (1994)
MathSciNet
Article
Google Scholar
Fulton, C.T.: Two-point boundary value problems with eigenvalue parameter in the boundary conditions. Proc. R. Soc. Edinb. Sect. A Math. 77(3–4), 293–308 (1977)
MathSciNet
Article
Google Scholar
Gantmaher, F.P., Krein, M.G.: Oscillating Matrices and Kernels and Small Oscillation of Mechanic Systems. Moscow (1957) (in Russian)
Hald, O.H., McLaughlin, J.R.: Solutions of inverse nodal problems. Inverse Probl. 5, 307–347 (1989)
MathSciNet
Article
Google Scholar
Hinton, D.: Sturms 1836 oscillation results evolution of the theory. In: Sturm-Liouville Theory: Past and Present. Birkhauser, Basel (2005)
Kamke, E.: Handbook of Ordinary Differential Equations. Nauka, Moscow (1976). [in Russian]
Google Scholar
Kapustin, N.Yu., Moiseev, E.I.: The basis property in \(L_p\) of the system of eigenfunctions corresponding to two problems with a spectral parameter in the boundary condition. Differ. Equ. 36(10), 1498–1501 (2000)
Karlin, C.: Total Positivity. Stanford Univ Press, Palo Alto (1968)
MATH
Google Scholar
Kellogg, O.D.: The oscillation of functions of orthogonal set. Am. J. Math. 38, 1–5 (1916)
MathSciNet
Article
Google Scholar
Kellogg, O.D.: Interpolation properties of orthogonal sets of solutions of differential equations. Am. J. Math. 40, 220–234 (1918)
MathSciNet
Google Scholar
Kerimov, N.B.: A boundary value problem for the Dirac system with a spectral parameter in the boundary conditions. Differ. Equ. 38(2), 164–174 (2002)
MathSciNet
Article
Google Scholar
Kerimov, N.B., Aliyev, Z.S.: On the basis property of the system of eigenfunctions of a spectral problem with spectral parameter in the boundary condition. Differ. Equ. 43(7), 905–915 (2007)
MathSciNet
Article
Google Scholar
Kerimov, N.B., Poladov, R.G.: Basis properties of the system of eigenfunctions in the Sturm–Liouville problem with a spectral parameter in the boundary conditions. Dokl. Math. 85(1), 8–13 (2012)
MathSciNet
Article
Google Scholar
Levin, A.Yu., Stepanov, G.D.: One dimensional boundary value problems with operators not reducing the number of changes of sign, I, II. Sib. Math. J. 17(3, 4), 466–482, 612–625 (1976)
Article
Google Scholar
Levitan, B.M., Sargsjan, I.S.: Introduction to spectral theory: Selfadjoint ordinary differential operators. In: Translation of Mathematical Monographs, vol. 39. AMS, Providence (1975)
McLaughlin, J.R.: Inverse spectral theory using nodal points as data—a uniqueness result. J. Differ. Equ. 73, 354–362 (1988)
MathSciNet
Article
Google Scholar
Pivovarchik, V.N.: Direct and inverse three-point Sturm–Liouville problems with parameter-dependent boundary conditions. Asymp. Anal. 26, 219–238 (2001)
MathSciNet
MATH
Google Scholar
Poisson, S.D.: Mémoire sur la manierè d’exprimer les fonctions par des séries de quantités périodiques, et sur l’Usage de cette transformation dans la resolution de differens problémes. Ecole Polytechnique 18, 417–489 (1820)
Google Scholar
Russakovskii, E.M.: Operator treatment of boundary problems with spectral parameters entering via polynomials in the boundary conditions. Funct. Anal. Appl. 9, 358–359 (1975)
Article
Google Scholar
Shkalikov, A.A.: Boundary problems for ordinary differential equations with parameter in the boundary conditions. J. Sov. Math. 33(6), 1311–1342 (1986)
Article
Google Scholar
Sturm, C.: Mémoire sur une classes d’Équations à différences partielles. J. Math. Pures Appl. 1, 373–444 (1836)
Google Scholar
Thaller, B.: The Dirac Equation. Springer, Berlin (1992)
Book
Google Scholar
Tikhonov, A.N., Samarskii, A.A.: Equations of Mathematical Physics. Pergamon Press, Oxford (1963)
MATH
Google Scholar
Walter, J.: Regular eigenvalue problems with eigenvalue parameter in the boundary condition. Math. Z. 133, 301–312 (1973)
MathSciNet
Article
Google Scholar
Yang, C.F., Huang, Z.Y.: Reconstruction of the Dirac operator from nodal data. Integral Equ. Oper. Theory 66, 539–551 (2010)
MathSciNet
Article
Google Scholar
Yang, C.F., Pivovarchik, V.N.: Inverse nodal problem for Dirac system with spectral parameter in boundary conditions. Complex Anal. Oper. Theory 7, 1211–1230 (2013)
MathSciNet
Article
Google Scholar