Skip to main content

Homogenization of the Darcy–Lapwood–Brinkman Flow in a Thin Domain with Highly Oscillating Boundaries

Abstract

In this paper, we investigate the flow through a thin corrugated domain filled with fluid-saturated porous medium. The porous medium flow is described by the nonlinear Darcy–Lapwood–Brinkman model acknowledging the viscous shear and the inertial effects. The thickness of the domain is assumed to be of the same small order \(\varepsilon \) as the period of the oscillating boundaries. Depending on the magnitude of the permeability with respect to \(\varepsilon \), we rigorously derive different asymptotic models and compare the results with the non-oscillatory case. We employ a homogenization technique based on the adaption of the unfolding method and deduce the influence of the porous structure and boundary oscillations on the effective flow.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Allaire, G.: Homogenization of the Navier–Stokes equations with a slip boundary condition. Commun. Pure Appl. Math. XLIV, 605–642 (1989)

    MathSciNet  MATH  Google Scholar 

  2. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23, 1482–1518 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anguiano, M.: On the non-stationary non-Newtonian flow through a thin porous medium. Z. Angew. Math. Mech. (2017). https://doi.org/10.1002/zamm.201600177

    MathSciNet  MATH  Google Scholar 

  4. Anguiano, M., Suárez-Grau, F.J.: Homogenization of an incompressible non-Newtonian flow through a thin porous medium. Z. Angew. Math. Phys. 68, 45 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anguiano, M., Suárez-Grau, F.J.: Derivation of a coupled Darcy–Reynolds equation for a fluid flow in a thin porous medium including a fissure. Z. Angew. Math. Phys. 68, 52 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arbogast, T., Douglas Jr., J., Hornung, U.: Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21, 823–836 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Awartani, M.M., Hamdan, M.H., Ford, R.A.: Fully developed flow through a porous channel bounded by flat plates. Appl. Math. Comput. 169, 749–757 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Bayada, G., Chambat, M.: Homogenization of the Stokes system in a thin film flow with rapidly varying thickness. RAIRO Modél. Math. Anal. Numér. 23, 205–234 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beavers, G.S., Sparrow, E.M., Magnuson, R.A.: Experiments on coupled parallel flows in a channel and a bounding porous medium. J. Basic Eng. 92, 843–848 (1970)

    Article  Google Scholar 

  10. Brinkman, H.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A 1, 27–34 (1947)

    Article  MATH  Google Scholar 

  11. Casado-Díaz, J., Luna-Laynez, M., Suárez-Grau, F.J.: Asymptotic behavior of the Navier Stokes systems in a thin domain with Navier condition on a slightly rough boundary. SIAM J. Math. Anal. 45(3), 1641–1674 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, D.-R., Pui, D.Y.H., Liu, B.Y.H.: Optimization of pleated filter designs using a finite-element numerical method. Aerosol Sci. Technol. 23, 579–590 (1995)

    Article  Google Scholar 

  13. Childress, S.: Viscous flow past a random array of sphere. J. Chem. Phys. 56, 2527 (1972)

    Article  Google Scholar 

  14. Cioranescu, D., Damlamian, A., Griso, G.: Periodic unfolding and homogenization. C. R. Acad. Sci. Paris Ser. I 335, 99–104 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Darcy, H.: Les Fontaines Publiques de la ville de Dijon. Dalmont, Paris (1856)

    Google Scholar 

  16. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, Steady-State Problems. Springer, New York (2011)

    MATH  Google Scholar 

  17. Khalilli, A., Basu, A.J., Huettel, M.: A non-Darcy model for recilculating flow through a fluid sediment interface in a cylindrical container. Acta Mech. 123, 75–87 (1997)

    Article  MATH  Google Scholar 

  18. Lapwood, E.R.: Convection of a fluid in a porous medium. Proc. Camb. Philos. Soc. 44, 508–521 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lundgren, J.S.: Slow flow through stationary random beds and suspension of spheres. J. Fluid Mech. 51, 273–299 (1972)

    Article  MATH  Google Scholar 

  20. Marušić, S., Marušić-Paloka, E.: Two-scale convergence for thin domains and its applications to some lower-dimensional models in fluid mechanics. Asymptot. Anal. 23, 23–58 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Merabet, N., Siyyam, H., Hamdan, M.H.: Analytical approach to the Darcy–Lapwood–Brinkman equation. Appl. Math. Comput. 196, 679–685 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Mikelić, A.: Remark on the result on homogenization in hydrodyamical lubrication by G. Bayada and M. Chambat. RAIRO Modél. Math. Anal. Numér. 25, 363–370 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20, 608–623 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (2006)

    MATH  Google Scholar 

  25. Pažanin, I., Siddheshwar, P.G.: Analysis of the laminar Newtonian fluid flow through a thin fracture modelled as a fluid-saturated sparsely packed porous medium. Zeitschrift fur Naturforschung A 72, 253–259 (2017)

    Google Scholar 

  26. Saffman, P.G.: On the boundary conditions at the surface of a porous medium. Stud. Appl. Math. 50, 93–101 (1971)

    Article  MATH  Google Scholar 

  27. Slattery, J.C.: Two-phase flow through porous media. AIChE J. 16, 345–352 (1970)

    Article  Google Scholar 

  28. Tam, C.K.W.: The drag on a cloud of spherical particles in low Reynolds number flow. J. Fluid Mech. 38, 537–546 (1969)

    Article  MATH  Google Scholar 

  29. Tartar, L.: Incompressible Fluid Flow in a Porous Medium Convergence of the Homogenization Process. Appendix to Lecture Notes in Physics, vol. 127. Springer, Berlin (1980)

    Google Scholar 

  30. Umawathi, J.C., Kumar, J.P., Sridhar, K.S.R.: Flow and heat transfer of Poiseuille–Couette flow in an inlined channel for composite porous medium. Int. J. Appl. Mech. Eng. 15, 249–266 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Javier Suárez-Grau.

Additional information

Communicated by Yong Zhou.

I. Pažanin: The first author of this paper has been supported by the Croatian Science Foundation (Project 3955: Mathematical modeling and numerical simulations of processes in thin or porous domains). F. J. Suárez-Grau: The second author of this paper has been supported by Ministerio de Economía y Competitividad (Spain), Proyecto Excelencia MTM2014-53309-P.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pažanin, I., Suárez-Grau, F.J. Homogenization of the Darcy–Lapwood–Brinkman Flow in a Thin Domain with Highly Oscillating Boundaries. Bull. Malays. Math. Sci. Soc. 42, 3073–3109 (2019). https://doi.org/10.1007/s40840-018-0649-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-018-0649-2

Keywords

  • Darcy–Lapwood–Brinkman equation
  • Thin domain
  • Highly oscillating boundary
  • Unfolding method

Mathematics Subject Classification

  • 35B27
  • 35B40
  • 76S05