Multiplicity of Positive Solutions for Schrödinger–Poisson Systems with a Critical Nonlinearity in \(\mathbb {R}^3\)



This paper is dedicated to studying the multiplicity of positive solutions for the following Schrödinger–Poisson problem
$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u+u+\phi u=\lambda Q(x)|u|^{q-2}u+ K(x)|u|^4u, \quad &{}\hbox {in} \ \mathbb {R}^3,\\ -\Delta \phi =u^2, \quad &{}\hbox {in} \ \mathbb {R}^3,\\ \end{array}\right. \end{aligned}$$
where \(4<q<6 \) or \(q=2\), \(\lambda >0\) is a parameter, K(x) and Q(x) satisfy some mild assumptions. With minimax theorems and Ljusternik–Schnirelmann theory, we investigate the relation between the number of positive solutions and the topology of the set where K(x) attains its global maximum for small \(\lambda \).


Multiple positive solutions Schrödinger–Poisson systems Variational methods Barycenter map Critical Sobolev exponent 


  1. 1.
    Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger–Maxwell’s equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Benci, V., Fortunato, D.: Solitary waves of the nonlinear Klein–Gordon equation coupled with Maxwell equations. Rev. Math. Phys. 14, 409–420 (2002)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Benci, V., Cerami, G.: Existence of positive solutions of the equation \(-\triangle u+a(x)u=u^\frac{N+2}{N-2}\). J. Funct. Anal. 88, 90–117 (1990)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Benci, V., Cerami, G.: Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology. Cal. Var. 2, 29–48 (1994)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36, 437–477 (1983)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger–Poisson systems. J. Differ. Equ. 248, 521–543 (2010)CrossRefMATHGoogle Scholar
  7. 7.
    Che, G., Chen, H.: Existence and multiplicity of nontrivial solutions for Klein–Gordon–Maxwell system with a parameter. J. Korean Math. Soc. 54, 1015–1030 (2017)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Che, G., Chen, H., Yang, L.: Existence and Multiplicity of Solutions for Semilinear Elliptic Systems with Periodic Potential, Bull. Malays. Math. Sci. Soc. (2017).
  9. 9.
    Chen, J., Tang, X., Gao, Z.: Existence of multiple solutions for modified Schrödinger–Kirchhoff–Poisson type systems via perturbation method with sign-changing potential. Comput. Math. Appl. 73(3), 505–519 (2017)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chen, S., Tang, X.: Ground state sign-changing solutions for a class of Schrödinger–Poisson type problems in \({\mathbb{R}^{3}}\). Z. Angew. Math. Phys. 4, 1–18 (2016)Google Scholar
  11. 11.
    D’Aprile, T., Mugnai, D.: Non-existence results for the coupled Klein–Gordon–Maxwell equations. Adv. Nonlinear Stud. 4, 307–322 (2004)MathSciNetMATHGoogle Scholar
  12. 12.
    He, X.: Multiplicity and concentration of positive solutions for the Schrödinger–Poisson equations. Z. Angew. Math. Phys. 62, 869–889 (2011)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    He, X., Zou, W.: Existence and concentration of ground states for Schrödinger–Poisson equations with critical growth. J. Math. Phys. 53, 023702 (2012)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Huang, L.R., Rocha, E.M., Chen, J.Q.: Positive and sign-changing solutions of a Schrödinger–Poisson system involving a critical nonlinearity. J. Math. Anal. Appl. 408, 55–69 (2013)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Huang, L.R., Rocha, E.M., Chen, J.Q.: Two positive solutions of a class of Schrödinger–Poisson system with indefinite nonlinearity. J. Differ. Equ. 255, 2463–2483 (2013)CrossRefMATHGoogle Scholar
  16. 16.
    Khoutir, S., Chen, H.: Multiple nontrivial solutions for a nonhomogeneous Schrödinger–Poisson system in \(\mathbb{R}^3\). Electron. J Qual. Theory 28, 1–7 (2017)Google Scholar
  17. 17.
    Lions, P.L.: The concentration-compactness principle in the calculus of variations: the locally compact case I, II. Ann. Inst. H.Poincaré Anal. Non Linéaire 1, 223–283 (1984)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Liu, H., Chen, H., Yang, X.: Multiple solutions for superlinear Schrödinger–Poisson system with sign-changing potential and nonlinearity. Comput. Math. Appl. 68(12), 1982–1990 (2014)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Liu, Z., Guo, S.: Existence and concentration of positive ground states for a Kirchhoff equation involving critical Sobolev exponent. Z. Angew. Math. Phys. 66, 747–769 (2015)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Liu, Z., Guo, S., Fang, Y.: Multiple semiclassical states for coupled Schrödinger–Poisson equations with critical exponential growth. J. Math. Phys. 56, 041505 (2015)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Liu, Z., Zhang, J.: Multiplicity and concentration of positive solutions for the fractional Schrödinger-Poisson systems with critical growth. ESAIM Optim. Calc. Var. (2016). Google Scholar
  22. 22.
    Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Shao, L., Chen, H.: Multiple solutions for Schrödinger-Poisson systems with sign-changing potential and critical nonlinearity. Electron. J. Differ. Equ. 276, 1–8 (2016)MATHGoogle Scholar
  24. 24.
    Shi, H., Chen, H.: Existence and multiplicity of solutions for a class of generalized quasilinear Schrödinger equations. J. Math. Anal. Appl. 452(1), 578–594 (2017)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Struwe, M.: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer, Berlin (2007)Google Scholar
  26. 26.
    Sun, J.T., Wu, T.F., Feng, Z.S.: Multiplicity of positive solutions for nonlinear Schrödinger–Poisson system. J. Differ. Equ. 260, 586–627 (2016)CrossRefMATHGoogle Scholar
  27. 27.
    Sun, J.T., Wu, T.F., Wu, Y.: Existence of nontrivial solution for Schrödinger–Poisson systems with indefinite steep potential well. Z. Angew. Math. Phys. 68(3), 73 (2017)CrossRefMATHGoogle Scholar
  28. 28.
    Sun, J.T., Chu, J., Wu, T.F.: Existence and multiplicity of nontrivial solutions for some biharmonic equations with \(p-\)Laplacian. J. Differ. Equ. 262(2), 945–977 (2017)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Wang, J., Tian, L., Xu, J., Zhang, F.: Existence of multiple positive solutions for Schrödinger–Poisson systems with critical growth. Z. Angew. Math. Phys. 66, 2441–2471 (2015)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Willem, M.: Minimax Theorems. Birkhäuser, Berlin (1996)CrossRefMATHGoogle Scholar
  31. 31.
    Xie, W., Chen, H., Shi, H.: Ground state solutions for the nonlinear Schrödinger–Poisson systems with sum of periodic and vanishing potentials. Math. Methods Appl. Sci. 41, 144–158 (2018)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Xu, L., Chen, H.: Multiplicity of small negative-energy solutions for a class of nonlinear Schrödinger–Poisson systems. Appl. Math. Comput. 243, 817–824 (2014)MathSciNetMATHGoogle Scholar
  33. 33.
    Zhang, J.: On the Schrödinger–Poisson equations with a general nonlinearity in the critical growth. Nonlinear Anal. 75, 6391–6401 (2012)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Zhao, L.G., Zhao, F.K.: Positive solutions for Schrödinger–Poisson equations with a critical exponent. Nonlinear Anal. 70(6), 2150–2164 (2009)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsCentral South UniversityChangshaChina
  2. 2.School of Mathematics and Computational ScienceHunan First Normal UniversityChangshaChina

Personalised recommendations