Existence of Solutions and Finite-Time Stability for Nonlinear Singular Discrete-Time Neural Networks


This paper investigates the problem of finite-time stability and control for a class of nonlinear singular discrete-time neural networks with time-varying delays and disturbances. First, based on the implicit function theorem and singular value decomposition method, a sufficient condition for the existence of the solution of such systems is established in terms of a linear matrix inequality (LMI). Then, using the Lyapunov functional approach combined with LMI technique we provide new delay-dependent sufficient conditions for robust \(H_{\infty }\) finite-time stability and control. Finally, some numerical examples are given to illustrate the efficiency of the proposed results.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Amato, F., Ambrosino, R., Ariola, M., Cosentino, C., Tommasi, G.D.: Finite-Time Stability and Control. Springer, Berlin (2014)

    Google Scholar 

  2. 2.

    Bao, H., Cao, J.: Finite-time generalized synchronization of nonidentical delayed chaotic systems. Nonlinear Anal. Model. Control 21(2), 306–324 (2016)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Boyd, S., Ghaoui, L.El, Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)

    Google Scholar 

  4. 4.

    Dai, L.: Singular control systems. In: Lecture Notes in Control and Information Sciences. Springer, Heidelberg (1989)

  5. 5.

    Dorato, P.: Short time stability in linear time-varying systems. Proc. IRE Int. Conv. Rec. 4, 83–87 (1961)

    Google Scholar 

  6. 6.

    Gahinet, P., Nemirovskii, A., Laub, A.J., Chilali, M.: LMI Control Toolbox for Use with MATLAB. The MathWorks Inc. Natick (1995)

  7. 7.

    Feng, Z., Shi, P.: Two equivalent sets: application to singular systems. Automatica 77, 198–205 (2017)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Feng, Z., Shi, P.: Sliding mode control of singular stochastic Markov jump systems. IEEE Trans. Autom. Control 62(8), 4266–4273 (2017)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Heaton, J.: Introduction to the Math of Neural Networks. Heaton Research Inc. Chesterfield (2012)

  10. 10.

    Kang, D., Li, J., Xu, L.: Existence and nonexistence of ground state solutions to singular elliptic systems. Bull. Malays. Math. Sci. Soc. (2017). https://doi.org/10.1007/s40840-017-0518-4

    Article  Google Scholar 

  11. 11.

    Kanjilal, P., Dey, P., Banerjee, D.: Reduced-size neural networks through singular value decomposition and subset selection. Electron. Lett. 29, 1516–1518 (1993)

    Article  Google Scholar 

  12. 12.

    Kumaresan, N., Balasubramaniam, P.: Optimal control for stochastic linear quadratic singular system using neural networks. J. Process Control 19, 482–488 (2009)

    Article  Google Scholar 

  13. 13.

    Kwon, O.M., Park, M.J., Park, J.H., Lee, S.M., Cha, E.J.: New criteria on delay-dependent stability for discrete-time neural networks with time-varying delays. Neurocomputing 121, 185–194 (2013)

    Article  Google Scholar 

  14. 14.

    Lee, T.H., Park, M.J., Park, J.H., Kwon, O.M., Lee, S.M.: Extended dissipative analysis for neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 25(10), 1936–1941 (2014)

    Article  Google Scholar 

  15. 15.

    Liang, S.: Positive solutions for singular boundary value problem with fractional q-differences. Bull. Malays. Math. Sci. Soc. 38(2), 647–666 (2015)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Liu, X., Park, J.H., Jiang, N., Cao, J.: Nonsmooth finite-time stabilization of neural networks with discontinuous activations. Neural Netw. 52, 25–32 (2015)

    Article  Google Scholar 

  17. 17.

    Li, Z., Wang, S.: Robust optimal \(H_\infty \) control for irregular buildings with AMD via LMI approach. Nonlinear Anal. Modell. Control 19(2), 256–271 (2014)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Lu, G.P., Ho, D.W.C.: Generalized quadratic stability for continuous-time singular systems with nonlinear perturbation. IEEE Trans. Autom. Control 51(5), 818–823 (2006)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Ma, Y., Zheng, Y.: Delay-dependent stochastic stability for discrete singular neural networks with Markovian jump and mixed time-delays. Neural Comput. Appl. (2016). https://doi.org/10.1007/s00521-016-2414-5

    Article  Google Scholar 

  20. 20.

    Phat, V.N., Trinh, H.: Exponential stabilization of neural networks with various activation functions and mixed time-varying delays. IEEE Trans. Neural. Netw. 21, 1180–1185 (2010)

    Article  Google Scholar 

  21. 21.

    Ratnavelu, K., Kalpana, M., Balasubramaniam, P.: Stability analysis of fuzzy genetic regulatory networks with various time delays. Bull. Malays. Math. Sci. Soc. (2016). https://doi.org/10.1007/s40840-016-0427-y

    Article  MATH  Google Scholar 

  22. 22.

    Sakthivel, R., Mathiyalagan, K., Anthoni, S.: Robust \(H_\infty \) control for uncertain discrete-time stochastic neural networks with time-varying delays. IET Control Theory Appl. 6(9), 1220–1228 (2012)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Shen, H., Park, J.H., Wu, Z.G.: Finite-time synchronization control for uncertain Markov jump neural networks with input constraints. Nonlinear Dyn. 77(4), 1709–1720 (2014)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Shen, H., Su, L., Park, J.H.: Extended passive filtering for discrete-time singular Markov jump systems with time-varying delays. Signal Process. 128, 68–77 (2016)

    Article  Google Scholar 

  25. 25.

    Song, S., Ma, S., Zhang, C.: Stability and robust stabilisation for a class of nonlinear uncertain discrete-time descriptor Markov jump systems. IET Control Theory Appl. 6, 2518–2527 (2012)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Tuan, L.A., Nam, P.T., Phat, V.N.: New \(H_\infty \) controller design for neural networks with interval time-varying delays in state and observation. Neural Process. Lett. 37, 235–249 (2013)

    Article  Google Scholar 

  27. 27.

    Tuan, L.A., Phat, V.N.: Robust finite-time stability and \(H_\infty \) control of linear discrete-time delay systems with norm-bounded disturbances. Acta Math. Vietnam. 41, 481–493 (2016)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Wade, W.R.: An Introduction to Analysis, 4th edn. Prentice Hall, New Jersey (2009)

    Google Scholar 

  29. 29.

    Wu, Z.G., Su, H., Shi, P., Chu, J.: Analysis and Synthesis of Singular Systems with Time-Delays. Springer, Heidelberg (2013)

    Google Scholar 

  30. 30.

    Wu, Y., Cao, J., Alofi, A., AL-Mazrooei, A., Elaiw, A.: Finite-time boundedness and stabilization of uncertain switched neural networks with time-varying delay. Neural Netw. 69, 135–143 (2015)

    Article  Google Scholar 

  31. 31.

    Xu, C., Li, P.: \(p\)-th moment exponential stability of stochastic fuzzy Cohen Grossberg neural networks with discrete and distributed delays. Nonlinear Anal. Modell. Control 22(2), 531–544 (2017)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Zhang, Y., Shi, P., Nguang, S.K., Song, Y.: Robust finite-time \(H_\infty \) control for uncertain discrete-time singular systems with Markovian jumps. IET Control Theory Appl. 8, 1105–1111 (2014)

    MathSciNet  Article  Google Scholar 

Download references


This work was supported by the National Foundation for Science and Technology Development, Vietnam, Grant 101.01.2017.300. The authors wish to thank anonymous reviewers for valuable comments and suggestions, which allowed us to improve the paper.

Author information



Corresponding author

Correspondence to Vu N. Phat.

Additional information

Communicated by Syakila Ahmad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tuan, L.A., Phat, V.N. Existence of Solutions and Finite-Time Stability for Nonlinear Singular Discrete-Time Neural Networks. Bull. Malays. Math. Sci. Soc. 42, 2423–2442 (2019). https://doi.org/10.1007/s40840-018-0608-y

Download citation


  • Finite-time stability
  • Stabilization
  • Singularity
  • Discrete-time systems
  • Time-varying delays
  • Linear matrix inequalities

Mathematics Subject Classification

  • 34D06
  • 65L20
  • 93D20
  • 94D05