An Analytic Operator-Valued Generalized Feynman Integral on Function Space



In this paper, we use a generalized Brownian motion process to define an analytic operator-valued Feynman integral. We then establish the existence of the analytic operator-valued generalized Feynman integral. We next investigate a stability theorem for the analytic operator-valued generalized Feynman integral.


Analytic operator-valued function space integral Analytic operator-valued generalized Feynman integral Stability theorem 

Mathematics Subject Classification

Primary 60J25 28C20 



The authors thank the referees for their helpful suggestions which led to the present version of this paper.


  1. 1.
    Cameron, R.H., Storvick, D.A.: An operator valued function space integral and a related integral equation. J. Math. Mech. 18, 517–552 (1968)MathSciNetMATHGoogle Scholar
  2. 2.
    Chang, K.S., Ko, J.W., Ryu, K.S.: Stability theorems for the operator-valued Feynman integral: the \(\cal{L}(L_1(\mathbb{R}), C_0(\mathbb{R}))\) theory. J. Korean Math. Soc. 35, 999–1018 (1998)MathSciNetMATHGoogle Scholar
  3. 3.
    Chang, S.J., Choi, J.G., Skoug, D.: Integration by parts formulas involving generalized Fourier–Feynman transforms on function space. Trans. Am. Math. Soc. 355, 2925–2948 (2003)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chang, S.J., Chung, D.M.: Conditional function space integrals with applications. Rocky Mt. J. Math. 26, 37–62 (1996)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chang, S.J., Lee, I.Y.: Analytic operator-valued generalized Feynman integrals on function space. J. Chungcheong Math. Soc. 23, 37–48 (2010)Google Scholar
  6. 6.
    Chang, S.J., Skoug, D.: Generalized Fourier–Feynman transforms and a first variation on function space. Integral Transforms Special Funct. 14, 375–393 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Johnson, G.W.: A bounded convergence theorem for the Feynman integral. J. Math. Phys. 25, 1323–1326 (1984)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Johnson, G.W., Lapidus, M.L.: Generalized Dyson series, generalized Feynman diagrams, the Feynman integral and Feynman’s operational calculus. Mem. Am. Math. Soc. 62, 1–78 (1986)MathSciNetMATHGoogle Scholar
  9. 9.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. I, Rev. and enlarged edn. Academic Press, New York (1980)MATHGoogle Scholar
  10. 10.
    Yeh, J.: Singularity of Gaussian measures on function spaces induced by Brownian motion processes with non-stationary increments. Ill. J. Math. 15, 37–46 (1971)MathSciNetMATHGoogle Scholar
  11. 11.
    Yeh, J.: Stochastic Processes and the Wiener Integral. Marcel Dekker Inc., New York (1973)MATHGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017

Authors and Affiliations

  1. 1.Department of MathematicsDankook UniversityCheonanKorea

Personalised recommendations