Normal Criteria for Family Meromorphic Functions Sharing Holomorphic Function

  • Nguyen Van Thin


In this paper, we study the value distribution of differential polynomial with the form \(f^n(f^{n_1})^{(t_1)}\dots (f^{n_k})^{(t_k)},\) where f is a transcendental meromorphic function. Namely, we prove that \(f^n(f^{n_1})^{(t_1)}\dots (f^{n_k})^{(t_k)}-P(z)\) has infinitely zeros, where P(z) is a nonconstant polynomial and \(n\in {\mathbb {N}},\) \(k, n_1, \dots , n_k, t_1, \dots , t_k\) are positive integer numbers satisfying \(n+\sum _{v}^{k}n_v\ge \sum _{v=1}^{k}t_v+3.\) Using it, we establish some normality criterias for family of meromorphic functions under a condition where differential polynomials generated by the members of the family share a holomorphic function with zero points. Our results generalize some previous results on normal family of meromorphic functions.


Meromorphic function Normal family Nevanlinna theory 

Mathematics Subject Classification

Primary 30D35 30D45 



The author wishes to thank the managing editor and referees for their very helpful comments and useful suggestions.


  1. 1.
    Chuang, C.T.: On Differential Polynomials in: Analysis of One Complex Variable. World Sci. Publishing, Singapore (1987)Google Scholar
  2. 2.
    Clunie, J., Hayman, W.K.: The spherical derivative of integral and meromorphic functions. Comment. Math. Helv. 40, 117–148 (1966)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Datt, G., Kumar, S.: Some normality criteria. Turk. J. Math. 40(6), 1258–1273 (2016)Google Scholar
  4. 4.
    Dethloff, G., Tan, T.V., Thin, N.V.: Normal criteria for families of meromorphic functions. J. Math. Anal. Appl. 411(2), 675–683 (2014)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Hayman, W.K.: Meromorphic Functions. Clarendon Press, Oxford (1964)MATHGoogle Scholar
  6. 6.
    Hinchliffe, J.D.: On a result of Chuang related to Hayman’s alternative. Comput. Methods Funct. Theory 2, 293–297 (2002)MathSciNetMATHGoogle Scholar
  7. 7.
    Li, Y.T., Gu, Y.X.: On normal families of meromorphic functions. J. Math. Anal. Appl. 354, 421–425 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Schwick, W.: Normality criteria for normal families of meromorphic function. J. Anal. Math. 52, 241–289 (1989)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Yang, L.: Value Distribution Theory. Springer, Berlin (1993)MATHGoogle Scholar
  10. 10.
    Yunbo, J., Zongsheng, G.: Normal families of meromorphic function sharing a holomorphic function and the converse of the Bloch principle. Acta. Math. Sci. 32(B–4), 1503–1512 (2012)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Zalcman, L.: Normal families: new perspective. Bull. Am. Mat. Soc. 35, 215–230 (1998)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Zeng, Z., Lahiri, I.: A normality criterion for meromorphic functions. Kodai Math. J. 35, 105–114 (2012)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017

Authors and Affiliations

  1. 1.Department of MathematicsThai Nguyen University of EducationThai Nguyen CityVietnam

Personalised recommendations