Skip to main content
Log in

Cell-Centered Finite Difference Method for the One-Dimensional Forchheimer Laws

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

Cell-centered finite difference method is introduced to solve the one-dimensional Forchheimer laws modeling incompressible fluids in porous media. Using this method, velocity and pressure can be approximated at the same time. Second-order accuracy error estimates for velocity and pressure are established. Numerical experiments are carried out to validate the convergence rates and show the efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Applied Science Publishers LTD, London (1979)

    Google Scholar 

  2. Neuman, S.P.: Theoretical derivation of Darcy’s law. Acta Mech. 25, 153–170 (1977)

    Article  MATH  Google Scholar 

  3. Whitaker, S.: Flow in porous media I: a theoretical derivation of Darcy’s law. Transp. Porous Media 1, 3–25 (1986)

    Article  Google Scholar 

  4. Hoang, Luan T., Ibragimov, Akif, Kieu, Thinh T.: One-dimensional two-phase generalized Forchheimer flows of incompressible fluids. J. Math. Anal. Appl. 401, 921–938 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ruth, D., Ma, H.: On the derivation of the Forchheimer equation by means of the averaging theorem. Transp. Porous Media 7, 255–264 (1992)

    Article  Google Scholar 

  6. Girault, V., Wheeler, M.F.: Numerical discretization of a Darcy-Forchheimer model. Numer. Math. 110, 161–198 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Pan, H., Rui, H.: A mixed element method for Darcy-Forchheimer incompressible miscible displacement problem. Comput. Method. Appl. Mech. Eng. 265, 1–11 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lopez, H., Molina, B., Jose, J.S.: Comparison between different numerical discretizations for a Darcy-Forchheimer model. Electron. Trans. Numer. Anal. 34, 187–203 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Park, E.J.: Mixed finite element method for generalized Forchheimer flow in porous media. Numer. Methods Part. Differ. Equ. 21, 213–228 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pan, H., Rui, H.: Mixed element method for two dimensional Darcy-Forchheimer model. J. Sci. Comput. 52, 563–587 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Aulisa, E., Bloshanskaya, L., Hoang, L., Ibragimovd, A.: Analysis of generalized Forchheimer flows of compressible fluids in porous media. J. Math. Phys. 50, 103102–103144 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Weiser, A., Wheeler, M.F.: On convergence of block-centered finite differences for elliptic problems. SIAM J. Numer. Anal. 25, 351–375 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Arbogast, T., Wheeler, M.F., Yotov, I.: Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite difference. SIAM J. Numer. Anal. 34, 828–852 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Arbogast, T., Dawson, C.T., Keenan, P.T., Wheeler, M.F., Yotov, I.: Enhanced cell-centered finite differences for elliptic equations on general geometry. SIAM J. Sci. Comput. 19, 402–425 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Xu, W.: Cell-centered finite difference method for parabolic equation. Appl. Math. Comput. 235, 66–79 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Rui, H., Pan, H.: A block-centered finite difference method for the Darcy-Forchheimer model. SIAM J. Numer. Anal. 50, 2612–2631 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rui, H., Pan, H.: Block-centered finite difference methods for parabolic equation with time-dependent coefficient. Jpn. J. Ind. Appl. Math. 30, 681–699 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Barrett, J.W., Liu, W.B.: Finite element approximation of the p-Laplacian. Math. Comput. 61, 523–537 (1993)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of first author was supported by the Science and Technology Project for the Universities of Shandong Province (Nos. J14LI53, J14LI52), the Doctoral Foundation of Shandong Jianzhu University (No. XNBS1441), and the NNSF of China (Nos. 11471195, 61303198, 11101453). The work of second author was supported by the NNSF of China (No. 91330106). The work of third author was supported by the NNSF of China (No. 11401289). The authors thank the anonymous referees for constructive comments and suggestions which led to improvements in the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingli Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Rui, H. & Liu, W. Cell-Centered Finite Difference Method for the One-Dimensional Forchheimer Laws. Bull. Malays. Math. Sci. Soc. 40, 545–564 (2017). https://doi.org/10.1007/s40840-017-0460-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-017-0460-5

Keywords

Mathematics Subject Classification

Navigation