Skip to main content

Advertisement

Log in

Noncommutative Fuk–Nagaev Inequalities and Their Applications

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

We establish a noncommutative extension of the Fuk–Nagaev inequalities for random variables in a noncommutative probability space. As applications, we first obtain noncommutative versions of Bennett inequality and Rosenthal inequality, and secondly, we study the weak law of large numbers for weighted sums in a noncommutative probability space and the weak law of large numbers for weighted sums of probability measures corresponding to the free additive convolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein, S.N.: Sur une modification de l’inégalité de Tchebichev. Ann. Scl. Inst. Sav. Ukraine Sect. Math. I (1924)

  2. Prohorov, Y.V.: Some remarks on the strong law of large numbers. Theor. Prob. Appl. 4, 204–208 (1959)

    Article  MathSciNet  Google Scholar 

  3. Bennett, G.: Probability inequalities for the sum of independent random variables. J. Am. Stat. Assoc. 57, 33–45 (1962)

    Article  MATH  Google Scholar 

  4. Fuk, D.H., Nagaev, S.V.: Probability inequalities for sums of independent random variables. Theory Probab. Appl. 16, 643–660 (1971)

    Article  MATH  Google Scholar 

  5. Nagaev, S.V.: Large deviations of sums of independent random variables. Ann. Probab. 7, 745–789 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Einmahl, U., Li, D.: Characterization of LIL behavior in Banach space. Trans. Am. Math. Soc. 360, 6677–6693 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Junge, M., Zeng, Q.: Noncommutative Bennett and Rosenthal inequalities. Ann. Probab. 41, 4287–4316 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sadeghi, Gh, Moslehian, M.S.: Inequalities for sums of random variables in noncommutative probability spaces. Rocky Mountain J. Math. 46, 309–323 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sadeghi, Gh, Moslehian, M.S.: Noncommutative martingale concentration inequalities. Ill. J. Math. 58, 561–575 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Nelson, E.: Notes on non-commutative integration. J. Funct. Anal. 15, 103–116 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  11. Batty, C.J.K.: The strong law of large numbers for states and traces of a \(W^{\ast }\)-algebra. Z. Wahrsch. Verw. Gebiete. 48, 177–191 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ruskai, M.B.: Inequalities for traces on von Neumann algebras. Commun. Math. Phys. 26, 280–289 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. Choi, B.J., Ji, U.C.: Weak law of large numbers for weighted sums in noncommutative probability space, Preprint (2015)

  14. Łuczak, A.: Laws of large numbers in von Neumann algebras and related results. Studia Math. 81, 231–243 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pata, V.: A generalized weak law of large numbers for noncommuting random variables. Indiana Univ. Math. J. 45, 591–601 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lindsay, J.M., Pata, V.: Some weak laws of large numbers in noncommutative probability. Math. Z. 226, 533–543 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Stoica, G.: Weak laws of large numbers in some non-commutative spaces. Bull. Lond. Math. Soc. 32, 471–476 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bercovici, H., Pata, V.: Stable laws and domains of attraction in free probability theory (with an appendix by Ph. Biane). Ann. Math. 149, 1023–1060 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Choi, B.J., Ji, U.C.: Convergence rates for weighted sums in noncommutative probability space. J. Math. Anal. Appl. 409, 963–972 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Stoica, G.: Noncommutative Baum–Katz theorems. Stat. Probab. Lett. 79, 320–323 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yeadon, F.J.: Non-commutative \(L^p\)-sapces. Math. Proc. Camb. Philos. Soc. 77, 91–102 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Voiculescu, D., Dykema, K., Nica, A.: Free Random Variables. CRM Monograph Series, vol. 1. American Mathematical Society, Providence (1992)

    MATH  Google Scholar 

  23. Bercovici, H., Voiculescu, D.: Free convolution of measures with unbounded support. Indiana Univ. Math. J. 42, 733–773 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Un Cig Ji.

Additional information

Communicated by Mohammad Sal Moslehian.

UCJ was supported by Basic Science Research Program through the NRF funded by the MEST (No. NRF-2013R1A1A2013712).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, B.J., Ji, U.C. Noncommutative Fuk–Nagaev Inequalities and Their Applications. Bull. Malays. Math. Sci. Soc. 41, 1327–1342 (2018). https://doi.org/10.1007/s40840-016-0394-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-016-0394-3

Keywords

Mathematics Subject Classification

Navigation