Skip to main content
Log in

Hölder Regularity of Grobman–Hartman Theorem for Dynamic Equations on Measure Chains

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

It has been proven that there exists a one-to-one correspondence H(tx) between solutions of the linear system and the nonlinear system in the previous work. However, there is no paper considering the Hölder regularity of the transformation H(tx) in the literature. This paper fills the gap. We establish a strict proof of the Hölder regularity of the transformation H(tx). We show that the conjugating function H(tx) in the generalized Hartman–Grobman theorem is always Hölder continuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. Agarwal, R.P., Bohner, M.: Basic calculus on time scales and some of its applications. Results Math. 35, 3–22 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agarwal, R.P., Bohner, M., O’Regan, D.: Dynamic equations on time scales: a survey. J. Comput. Appl. Math. 141(1–2), 1–26 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barreira, L., Valls, C.: Hölder Grobman-Hartman linearization. Discrete Contin. Dyn. Syst. 18, 187–197 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barreira, L., Valls, C.: Conjugacies for linear and nonlinear perturbations of nonuniform behavior. J. Funct. Anal. 253, 324–358 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barreira, L., Valls, C.: A Grobman-Hartman theorem for general nonuniform exponential dichotomies. J. Funct. Anal. 257, 1976–1993 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bohner, M., Guseinov, G., Peterson, A.: Introduction to the Time Scales Calculus. Advances in Dynamic Equations on Time Scales. Birkhänser, Boston (2003)

    Book  Google Scholar 

  7. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. An Introduction with Applications. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

  8. Castillo, S., Pinto, M.: Asynptotic behavior of functinal dynamic equations in time scale. Dyn. Syst. Appl. 19, 165–178 (2010)

    MATH  Google Scholar 

  9. DaCunha, J.J.: Instability results for slowly time varying linear dynamic systems on time scales. J. Math. Anal. Appl. 328(2), 1278–1289 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Erbe, L., Peterson, A.: Green functions and comparison theorems for differential equations on measure chains. Dyn. Contin. Discrete Impuls. Syst. 6, 121–137 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Erbe, L., Peterson, A., Saker, S.H.: Oscillation criteria for second-order nonlinear delay dynamic equations. J. Math. Anal. Appl. 333(1), 505–522 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fenner, J.L., Pinto, M.: On a Hartman linearization theorem for a class of ODE with impulse effect. Nonlinear Anal. 38, 307–325 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grobman, D.: Homeomorphism of systems of differential equations. Dokl. Akad. Nauk SSSR 128, 880–881 (1959)

    MathSciNet  MATH  Google Scholar 

  14. Hartman, P.: On the local linearization of differential equations. Proc. Am. Math. Soc. 14, 568–573 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  15. Han, Z., Sun, S.R., Shi, B.: Oscillation criteria for a class of second-order Emden-Fowler delay dynamic equations on time scales. J. Math. Anal. Appl. 334(2), 847–858 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hilger, S.: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Dissertation, University of Würzburg, Würzburg (1988)

  17. Hilger, S.: Generalized theorem of Hartman-Grobman on measure chains. J. Aust. Math. Soc. A 60(2), 157–191 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang, L.: Generalized exponential dichotomy and global Linearization. J. Math. Anal. Appl. 315, 474–490 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jiang, L.: Strongly topological linearization with generalized exponential dichotomy. Nonlinear Anal. Theory Methods Appl. 67, 1102–1110 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, W.N.: Some delay integral inequalities on time scales. Comput. Math. Appl. 59(6), 1929–1936 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, W.N.: Some integral inequalities useful in the theory of certain partial dynamic equations on time scales. Comput. Math. Appl. 61(7), 1754–1759 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, T., Han, Z., Sun, S., Yang, D.: Existence of nonoscillatory solutions to second-order neutral delay dynamic equations on time scales. Adv. Diff. Equ. 2009, 562329 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Li, T., Rogovchenko, Y.: Oscillation of second-order neutral differential equations. Math. Nachr. 288(10), 1150–1162 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, X., Bohner, M.: An impulsive delay differential inequality and applications. Comput. Math. Appl. 64, 1875–1881 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lu, K.: A Hartman-Grobman theorem for scalar reaction-diffusion equations. J. Differ. Equ. 93, 364–394 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. McSwiggen, P.: A geometric characterization of smooth linearizability. Mich. Math. J. 43, 321–335 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Palmer, K.: A generalization of Hartmans linearization theorem. J. Math. Anal. Appl. 41, 753–758 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pinto, M.: Dichotomies and asymptotic formulas for the solutions of differential equations. J. Math. Anal. Appl. 195, 16–31 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pinto, M.: Dichotomies for differential systems with impulsive effect. In: Proceedings of the 1st World Congress of Nonlinear Analysis, pp. 1181–1192. Walter De Gruyter, Berlin (1996)

  30. Pinto, M.: Dichotomy and existence of periodic solutions of quasilinear functional differential equations. Nonlinear Anal. 72, 1227–1234 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pötzche, C.: Topological decoupling, linearization and perturbation on inhomogeneous time scales. J. Differ. Equ. 245, 1210–1242 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Reinfelds, A.: A generalized theorem of Grobman and Hartman. Latv. Mat. Ezheg. 29, 84–88 (1985)

    MATH  Google Scholar 

  33. Saker, S.H.: Oscillation of second-order nonlinear neutral delay dynamic equations on time scales. J. Comput. Appl. Math. 2006, 123–141 (1872)

    MathSciNet  MATH  Google Scholar 

  34. Saker, S.H.: Oscillation criteria of second-order half-linear dynamic equations on time scales. J. Comput. Appl. Math. 177(2), 375–387 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shi, J., Zhang, J.: Classification of The Differential Equations. Science Press, Beijing (2003)

    Google Scholar 

  36. Wang, L., Xia, Y., Zhao, N.: A characterization of generalized exponential dichotomy. J. Appl. Anal. Comput. (2015). doi:10.11948/2015052

  37. Xia, Y.H., Cao, J., Han, M.: A new analytical method for the linearization of dynamic equation on measure chains. J. Differ. Equ. 235(2), 527–543 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Xia, Y.H., Chen, X., Romanovski, V.: On the linearization theorem of Fenner and Pinto. J. Math. Anal. Appl. 400(2), 439–451 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xing, Y.P., Han, M., Zheng, G.: Initial value problem for first-order integro-differential equation of Volterra type on time scales. Nonlinear Anal. 60(3), 429–442 (2005)

    MathSciNet  MATH  Google Scholar 

  40. Xing, Y.P., Ding, W., Han, M.: Periodic boundary value problems of integro-differential equation of Volterra type on time scales. Nonlinear Anal. 68(1), 127–138 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, C., Li, T., Agarwal, R.P., Bohner, M.: Oscillation results for fourth-order nonlinear dynamic equations. Appl. Math. Lett. 25, 2058–2065 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Yonghui Xia was supported by the National Natural Science Foundation of China under Grants (Nos. 11271333 and 10901140), the Natural Science Foundation of Zhejiang Province under Grant (LY15A010007), the Scientific Research Funds of Huaqiao University and China Postdoctoral Science Foundation (No. 2014M562320). Kit Ian Kou was supported from the National Natural Science Foundation of China under Grant (Nos. 11401606 and 11501015), University of Macau (Nos. MYRG2015-00058-FST and MYRG099(Y1-L2)-FST13-KKI) and the Macao Science and Technology Development Fund (No. FDCT/099/2012/A3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghui Xia.

Additional information

Communicated by Ahmad Izani Md. Ismail.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Chen, L., Kou, K.I. et al. Hölder Regularity of Grobman–Hartman Theorem for Dynamic Equations on Measure Chains. Bull. Malays. Math. Sci. Soc. 41, 1153–1180 (2018). https://doi.org/10.1007/s40840-016-0380-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-016-0380-9

Keywords

Mathematics Subject Classification

Navigation