Skip to main content
Log in

KMS States on Generalised Bunce–Deddens Algebras and their Toeplitz Extensions

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

We study the generalised Bunce–Deddens algebras and their Toeplitz extensions constructed by Kribs and Solel from a directed graph and a sequence \(\omega \) of positive integers. We describe both of these \(C^*\)-algebras in terms of novel universal properties, and prove uniqueness theorems for them; if \(\omega \) determines an infinite supernatural number, then no aperiodicity hypothesis is needed in our uniqueness theorem for the generalised Bunce–Deddens algebra. We calculate the KMS states for the gauge action in the Toeplitz algebra when the underlying graph is finite. We deduce that the generalised Bunce–Deddens algebra is simple if and only if it supports exactly one KMS state, and this is equivalent to the terms in the sequence \(\omega \) all being coprime with the period of the underlying graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartle, R.G.: The Elements of Integration. Wiley, New York (1966)

    MATH  Google Scholar 

  2. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics. Equilibrium states. Models in quantum statistical mechanics, vol. 2, p. xiv+519. Springer, Berlin (1997)

    MATH  Google Scholar 

  3. Bates, T., Pask, D., Raeburn, I., Szymański, W.: The \(C^*\)-algebras of row-finite graphs. N. Y. J. Math. 6, 307–324 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Choksi, J.R.: Inverse limits of measure spaces. Proc. Lond. Math. Soc. 8(3), 321–342 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  5. Enomoto, M., Fujii, M., Watatani, Y.: KMS states for gauge action on \(O_{A}\). Math. Japon 29, 607–619 (1984)

    MathSciNet  MATH  Google Scholar 

  6. Enomoto, M., Watatani, Y.: A graph theory for \(C^{\ast }\)-algebras. Math. Japon 25, 435–442 (1980)

    MathSciNet  MATH  Google Scholar 

  7. Exel, R., Laca, M.: Partial dynamical systems and the KMS condition. Comm. Math. Phys. 232, 223–277 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fowler, N.J., Raeburn, I.: The Toeplitz algebra of a Hilbert bimodule. Indiana Univ. Math. J. 48, 155–181 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. an Huef, A., Raeburn, I.: The ideal structure of Cuntz-Krieger algebras. Ergod. Theory Dynam. Syst. 17, 611–624 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. an Huef, A., Laca, M., Raeburn, I., Sims, A.: KMS states on the \(C^*\)-algebras of finite graphs. J. Math. Anal. Appl. 405, 388–399 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. an Huef, A., Laca, M., Raeburn, I., Sims, A.: KMS states on \(C^*\)-algebras associated to higher-rank graphs. J. Funct. Anal. 266, 265–283 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. an Huef, A., Laca, M., Raeburn, I., Sims, A.: KMS states on the \(C^*\)-algebras of reducible graphs. Ergod. Theory Dynam. Syst. 1–24 (2014)

  13. an Huef, A., Laca, M., Raeburn, I., Sims, A.: KMS states on the \(C^*\)-algebra of a higher-rank graph and periodicity in the path space. J. Funct. Anal. 268, 1840–1875 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Katsura, T.: A class of \(C^*\)-algebras generalizing both graph algebras and homeomorphism \(C^*\)-algebras I, fundamental results. Trans. Am. Math. Soc. 356(11), 4287–4322 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Katsura, T.: A class of \(C^*\)-algebras generalizing both graph algebras and homeomorphism \(C^*\)-algebras II, examples. Int. J. Math. 17(7), 791–833 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Katsura, T.: A class of \(C^*\)-algebras generalizing both graph algebras and homeomorphism \(C^*\)-algebras III. Ideal structures. Ergod. Theory Dynam. Syst. 26, 1805–1854 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kribs, D.W., Solel, B.: A class of limit algebras associated with directed graphs. J. Aust. Math. Soc. 82, 345–368 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kumjian, A., Pask, D., Raeburn, I.: Cuntz-Krieger algebras of directed graphs. Pacific J. Math. 184, 161–174 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Laca, M., Larsen, N.S., Neshveyev, S., Sims, A., Webster, S.B.G.: Von Neumann algebras of strongly connected higher-rank graphs. Math. Ann. 363, 657–678 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Laca, M., Raeburn, I.: Phase transition on the Toeplitz algebra of the affine semigroup over the natural numbers. Adv. Math. 225, 643–688 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, H., Pask, D., Sims, A.: An elementary approach to \(C^*\)-algebras associated to topological graphs. N. Y. J. Math. 20, 447–469 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Raeburn, I.: Graph algebras. Published for the conference board of the mathematical sciences, p. vi+113. Washington, DC (2005)

  23. Ruiz, E., Sims, A., Sørensen, A.P.W.: UCT-Kirchberg algebras have nuclear dimension 1. Adv. Math. 279, 1–28 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ruiz, E., Sims, A., Tomforde, M.: The nuclear dimension of graph \(C^*\)-algebras. Adv. Math. 272, 96–123 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Seneta, E.: Non-negative matrices and Markov chains, Revised reprint of the second edtion (1981) (Springer, New York; MR0719544), p. xvi+287. Springer, New York (2006)

Download references

Acknowledgments

This research was supported by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Rout.

Additional information

Communicated by Mohammad Sal Moslehian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robertson, D., Rout, J. & Sims, A. KMS States on Generalised Bunce–Deddens Algebras and their Toeplitz Extensions. Bull. Malays. Math. Sci. Soc. 41, 123–157 (2018). https://doi.org/10.1007/s40840-015-0244-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-015-0244-8

Keywords

Mathematics Subject Classification

Navigation