Centers of Path Algebras, Cohn and Leavitt Path Algebras

  • María G. Corrales García
  • Dolores Martín Barquero
  • Cándido Martín González
  • Mercedes Siles Molina
  • José F. Solanilla Hernández


This paper is devoted to the study of the center of several types of path algebras associated to a graph E over a field K. First we consider the path algebra KE and prove that if the number of vertices is infinite then the center is zero; otherwise, it is K, except when the graph E is a cycle in which case the center is K[x], the polynomial algebra in one indeterminate. Then we compute the centers of prime Cohn and Leavitt path algebras. A lower and an upper bound for the center of a Leavitt path algebra are given by introducing the graded Baer radical for graded algebras. In the final section we describe the center of a prime graph C\(^*\)-algebra for a row-finite graph.


Path algebra Cohn path algebra Leavitt path algebra Center Graph C\(^*\)-algebra 

Mathematics Subject Classification

Primary 16D70 46L55 



All the authors have been partially supported by the Spanish Ministerio de Economía y Competitividad and Fondos FEDER, jointly, through project MTM2013-41208-P, by the Junta de Andalucía and Fondos FEDER, jointly, through projects FQM-336 and FQM-7156, and by the Programa de becas para estudios doctorales y postdoctorales SENACYT-IFARHU, contrato no. 270-2008-407, Gobierno de Panamá. This work was done during research stays of the first and last author in the University of Málaga. Both authors would like to thank the host center for its hospitality and support.


  1. 1.
    Abrams, G., Aranda Pino, G.: The Leavitt path algebra of a graph. J. Algebra. 293(2), 319–334 (2005)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Abrams, G., Aranda Pino, G., Perera, F., Siles Molina, M.: Chain conditions for Leavitt path algebras. Forum Math. 22, 95–114 (2010)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Abrams, G., Ara, P., Siles Molina, M.: Leavitt path algebras. A primer and handbook. Springer. To appear.
  4. 4.
    Abrams, G., Funk-Neubauer, D.: On the simplicity of the Lie algebras associated to Leavitt algebras. Comm. Algebra. 39, 4059–4069 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Abrams, G., Tomforde, M.: A class of C\(^\ast \)-algebras that are prime but not primitive. Preprint arXiv:1306.6669 [math.0A] (2013)
  6. 6.
    Ara, P., Mathieu, M.: Local multipliers of C\(^\ast \)-algebras. Springer monographs in mathematics. Springer-Verlag London Ltd., London (2003)CrossRefMATHGoogle Scholar
  7. 7.
    Aranda Pino, G., Crow, K.: The Center of a Leavitt path algebra. Rev. Math. Iberoam. 27(2), 621–644 (2011)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Aranda Pino, G., Martín Barquero, D., Martín González, C., Siles Molina, M.: The socle of a Leavitt path algebra. J. Pure Appl. Algebra. 212(3), 500–509 (2008)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Aranda Pino, G., Pardo, E., Siles Molina, M.: Exchange Leavitt path algebras and stable rank. J. Algebra. 305(2), 912–936 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Aranda Pino, G., Pardo, E., Siles Molina, M.: Prime spectrum and primitive Leavitt path algebras. Indiana Univ. Math. J. 58(2), 869–890 (2009)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Brešar, M., Perera, F., Sánchez Ortega, J., Siles Molina, M.: Computing the maximal algebra of quotients of a Lie algebra. Forum Math. 21(4), 601–620 (2009)MathSciNetMATHGoogle Scholar
  12. 12.
    Nǎstǎsescu, C., van Oystaeyen, F.: Graded ring theory. North-Holland, Amsterdam (1982)MATHGoogle Scholar
  13. 13.
    Tomforde, M.: Uniqueness theorems and ideal structure for Leavitt path algebras. J. Algebra. 318, 270–299 (2007)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Universiti Sains Malaysia 2015

Authors and Affiliations

  • María G. Corrales García
    • 1
  • Dolores Martín Barquero
    • 2
  • Cándido Martín González
    • 3
  • Mercedes Siles Molina
    • 3
  • José F. Solanilla Hernández
    • 1
  1. 1.Centro Regional Universitario de Coclé: “Dr. Bernardo Lombardo”Universidad de PanamáPenonoméPanama
  2. 2.Departamento de Matemática Aplicada, Escuela Técnica Superior de Ingenieros IndustrialesUniversidad de MálagaMálagaSpain
  3. 3.Departamento de Álgebra Geometría y Topología, Facultad de CienciasUniversidad de MálagaMálagaSpain

Personalised recommendations