Factorization of Operators Through Orlicz Spaces

  • M. Mastyło
  • E. A. Sánchez Pérez


We study factorization of operators between quasi-Banach spaces. We prove the equivalence between certain vector norm inequalities and the factorization of operators through Orlicz spaces. As a consequence, we obtain the Maurey–Rosenthal factorization of operators into \(L_p\)-spaces. We give several applications. In particular, we prove a variant of Maurey’s Extension Theorem.


Factorization Banach function lattice Banach envelope Orlicz space 

Mathematics Subject Classification

46E30 47B38 46B42 



The research of the first author was supported by the National Science Centre (NCN), Poland, Grant No. 2011/01/B/ST1/06243. The research of the second author was supported by Ministerio de Economía y Competitividad, Spain, under project #MTM2012-36740-C02-02.


  1. 1.
    Calderón, A.P.: Intermediate spaces and interpolation, the complex method. Stud. Math. 24, 113–190 (1964)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Davis, W.J., Garling, D.J.H., Tomczak-Jaegermann, N.: The complex convexity of quasi-normed linear spaces. J. Funct. Anal. 55, 110–150 (1984)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Defant, A.: Variants of the Maurey–Rosenthal theorem for quasi Köthe function spaces. Positivity 5, 153–175 (2001)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Defant, A., Mastyło, M., Michels, C.: Orlicz norm estimates for eigenvalues of matrices. Isr. J. Math. 132, 45–59 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Defant, A., Sánchez Pérez, E.A.: Maurey–Rosenthal factorization of positive operators and convexity. J. Math. Anal. Appl. 297, 771–790 (2004)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Defant, A., Sánchez Pérez, E.A.: Domination of operators on function spaces. Math. Proc. Camb. Phil. Soc. 146, 57–66 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Diestel, J.: Sequences and Series in Banach Spaces. Springer, Berlin (1984)CrossRefMATHGoogle Scholar
  8. 8.
    Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge University Press, Cambridge (1995)CrossRefMATHGoogle Scholar
  9. 9.
    Dilworth, S.J.: Special Banach lattices and their applications. In: Handbook of the Geometry of Banach Spaces, vol. 1. Elsevier, Amsterdam (2001)Google Scholar
  10. 10.
    Figiel, T., Pisier, G.: Séries alétoires dans les espaces uniformément convexes ou uniformément lisses. Comptes Rendus de l’Académie des Sciences, Paris, Série A 279, 611–614 (1974)MATHGoogle Scholar
  11. 11.
    Kalton, N.J., Montgomery-Smith, S.J.: Set-functions and factorization. Arch. Math. (Basel) 61(2), 183–200 (1993)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kamińska, A., Mastyło, M.: Abstract duality Sawyer formula and its applications. Monatsh. Math. 151(3), 223–245 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kantorovich, L.V., Akilov, G.P.: Functional Analysis, 2nd edn. Pergamon Press, Oxford (1982)MATHGoogle Scholar
  14. 14.
    Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Springer, Berlin (1979)CrossRefMATHGoogle Scholar
  15. 15.
    Lozanovskii, G.Ya.: On some Banach lattices IV, Sibirsk. Mat. Z. 14, 140–155 (1973) (in Russian); English transl.: Siberian. Math. J. 14, 97–108 (1973)Google Scholar
  16. 16.
    Lozanovskii, G.Ya.:Transformations of ideal Banach spaces by means of concave functions. In: Qualitative and Approximate Methods for the Investigation of Operator Equations, Yaroslavl, vol. 3, pp. 122–147 (1978) (Russian) Google Scholar
  17. 17.
    Mastyło, M., Szwedek, R.: Interpolative constructions and factorization of operators. J. Math. Anal. Appl. 401, 198–208 (2013)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Nikišin, E.M.: Resonance theorems and superlinear operators. Usp. Mat. Nauk 25, 129–191 (1970) (Russian) Google Scholar
  19. 19.
    Okada, S., Ricker, W.J., Sánchez Pérez, E.A.: Optimal Domain and Integral Extension of Operators acting in Function Spaces. Operator Theory: Adv. Appl., vol. 180. Birkhäuser, Basel (2008)Google Scholar
  20. 20.
    Pisier, G.: Factorization of linear operators and geometry of Banach spaces. CBMS Regional Conference Series in Mathematics, vol. 60. Published for the Conference Board of the Mathematical Sciences, Washington, DC (1986)Google Scholar
  21. 21.
    Reisner, S.: On two theorems of Lozanovskii concerning intermediate Banach lattices, geometric aspects of functional analysis (1986/87). Lecture Notes in Math., vol. 1317, pp. 67–83. Springer, Berlin (1988)Google Scholar
  22. 22.
    Wojtaszczyk, P.: Banach Spaces for Analysts. Cambridge University Press, Cambridge (1991)CrossRefMATHGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Universiti Sains Malaysia 2015

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceA. Mickiewicz UniversityPoznanPoland
  2. 2.Institute of Mathematics Polish Academy of SciencesPoznanPoland
  3. 3.Instituto Universitario de Matemática Pura y AplicadaUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations