Characterizing Maximal Non-Mori Subrings of an Integral Domain



The main purpose of this paper is to study maximal non-Mori subrings R of a domain S. We give characterizations of such domains in several cases. If the ring R is semilocal, (RS) is a normal pair, and R is a maximal non-Mori subring of S, we give sharp upper bounds for the number of rings and the length of chains of rings in [RS], the set of intermediate rings.


Integral domain Valuation domain Mori domain Mori pair Intermediate ring Pullback 

Mathematics Subject Classification

Primary 13B99 13G05 13A15 Secondary 13C13 13F05 13B21 



The authors would like to thank the referee for his/her valuable suggestions.


  1. 1.
    Anderson, D.D., Anderson, D.F., Dobbs, D.E., Houston, E.G.: Some finiteness and divisibility conditions on the proper overrings of an integral domain. Commun. Algebra 12, 1689–1706 (1984)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Anderson, D.D., Anderson, D.F., Zafrullah, M.: Factorization in integral domains. J. Pure Appl. Algebra 69, 1–19 (1990)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ayache, A.: Sous anneaux de la forme \(D+I\) d’une \(K\)-algèbre intègre. Port. Math. 50(2), 139–149 (1993)MATHGoogle Scholar
  4. 4.
    Ayache, A., Ben Nasr, M., Echi, O., Jarboui, N.: Universally catenarian and going-down pairs of rings. Math. Z. 238(4), 695–731 (2001)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Ayache, A., Dobbs, D.E., Echi, O.: On maximal non-ACCP subrings. J. Algebra Appl. 6(5), 873–894 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Ayache, A., Jaballah, A.: Residually algbebraic pairs of rings. Math. Z. 225, 49–65 (1997)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Ayache, A., Jarboui, N.: Maximal non-Notherian subring of a domain. J. Algebra 248, 806–823 (2002)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Ballet, B., Dessagnes, N.: Anneaux de polynômes sur un anneau de Mori. Port. Math. 45(1), 13–24 (1988)MATHGoogle Scholar
  9. 9.
    Barucci, V.: Mori domains. Non-Noetherian Commutative Ring Theory. Mathematics and its applications, vol. 520, pp. 57–73. Kluwer Academic Publishers, Boston (2000)CrossRefGoogle Scholar
  10. 10.
    Barucci, V., Gabelli, S.: How far is a Mori domain from being a Krull domain? J. Pure Appl. Algebra 45, 101–112 (1987)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Ben Nasr, M.: Some remarks on residually algbebraic pairs of rings. Arch. Math. 78, 362–368 (2002)CrossRefMATHGoogle Scholar
  12. 12.
    Cahen, P.-J.: Couples d’anneaux partageant un idéal. Arch. Math. 51, 505–514 (1988)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Davis, E.D.: Overrings of commutative rings III: normal pairs. Trans. Am. Math. Soc. 182, 175–185 (1973)MathSciNetMATHGoogle Scholar
  14. 14.
    Dessagnes, N.: Sur les anneaux de Mori. (French) Groupe d’Étude d’Algèbre (Marie-Paule Malliavin), 1re année (1975/76), Exp. No. 1, pp. 4. Academic Press, New York (1978)Google Scholar
  15. 15.
    Dessagnes, N.: Intersection d’anneaux de Mori-Exemples. Port. Math. 44(4), 379–392 (1987)MathSciNetMATHGoogle Scholar
  16. 16.
    Dumitrescu, T., Shah, T., Zafrullah, M.: Domains whose overrings satisfy ACCP. Commun. Algebra 28(9), 4403–4409 (2000)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Ferrand, D., Olivier, J.-P.: Homomorphisms minimaux d’anneaux. J. Algebra 16, 461–471 (1970)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Gabelli, S., Houston, E.: Coherentlike conditions in pullbacks. Mich. Math. J. 44(1), 99–123 (1997)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Gilmer, R.: Multiplicative Ideal Theory. Marcel Dekker, New York (1972)MATHGoogle Scholar
  20. 20.
    Grams, A.: Atomic rings and the ascending chain condition for principal ideals. Math. Proc. Camb. Philos. Soc. 75, 321–329 (1974)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Houston, E.G., Lucas, T., Viswanathan, T.M.: Primary decomposition of divisorial ideals in Mori domains. J. Algebra 117(2), 327–342 (1988)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Jarboui, N., El Islam Toumi, M.: A visit to maximal non-ACCP subrings, J. Algebra. Appl. (in press)Google Scholar
  23. 23.
    Kaplansky, I.: Commutative Rings, (Revised edition). University of Chicago Press, Chicago (1974)MATHGoogle Scholar
  24. 24.
    Querré, J.: Idéaux divisoriels d’un anneau de polynômes. J. Algebra 64, 270–284 (1980)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Roitman, M.: On Mori domains and commutative rings with CC\(^\bot \) I. J. Pure Appl. Algebra 56, 247–268 (1989)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Roitman, M.: On Mori domains and commutative rings with CC\(^\bot \) II. J. Pure Appl. Algebra 61, 53–77 (1989)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Visweswaran, S.: When is \((K+I, K[y_1,\ldots, y_t])\) a Mori pair? Commun. Algebra 32, 3095–3110 (2004)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Universiti Sains Malaysia 2015

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Sciences of SfaxUniversity of SfaxSfaxTunisia

Personalised recommendations