Skip to main content
Log in

A Modified Method for a Cauchy Problem of the Helmholtz Equation

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In this paper, a Cauchy problem for the Helmholtz equation is investigated. It is well known that this problem is severely ill-posed in the sense that the solution (if it exists) does not depend continuously on the given Cauchy data. To overcome such difficulties, we propose a modified regularization method to approximate the solution of this problem, and then analyze the stability and convergence of the proposed regularization method based on the conditional stability estimates. Finally, we present two numerical examples to illustrate that the proposed regularization method works well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beskos, D.E.: Boundary element methods in dynamic analysis: part II (1986–1996). Appl. Mech. Rev. 50, 149–197 (1997)

    Article  Google Scholar 

  2. Chen, J.T., Wong, F.C.: Dual formulation of multiple reciprocity method for the acoustic mode of a cavity with a thin partition. J. Sound. Vib. 217, 75–95 (1998)

    Article  Google Scholar 

  3. Hall, W.S., Mao, X.Q.: Boundary element investigation of irregular frequencies in electromagnetic scattering. Eng. Anal. Bound. Elem. 16, 245–252 (1995)

    Article  Google Scholar 

  4. Harari, I., Barbone, P.E., Slavutin, M., Shalom, R.: Boundary infinite elements for the Helmholtz equation in exterior domains. Int. J. Numer. Methods Eng. 41, 1105–1131 (1998)

    Article  MATH  Google Scholar 

  5. Arendt, W., Regińska, T.: An ill-posed boundary value problem for the Helmholtz equation on Lipschitz domains. J. Inverse Ill-Posed Probl. 17, 703–711 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, G., Zhou, J.: Boundary Element Methods. Computational Mathematics and Applications. Academic Press, London (1992)

    MATH  Google Scholar 

  7. Regińska, T., Regiński, K.: Approximate solution of a Cauchy problem for the Helmholtz equation. Inverse Probl. 22, 975–989 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Yale University Press, New Haven (1923)

    MATH  Google Scholar 

  9. Isakov, V.: Inverse Problems for Partial Differential Equations. Applied Mathematical Sciences, vol. 127. Springer, New York (1998)

    MATH  Google Scholar 

  10. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems, V. H. Winston & Sons, Washington, DC: John Wiley & Sons, New York (1977)

  11. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Mathematics and Its Applications, vol. 375. Kluwer Academic, Dordrecht (1996)

    Book  MATH  Google Scholar 

  12. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Applied Mathematical Sciences, vol. 120. Springer, New York (2011)

    MATH  Google Scholar 

  13. Cheng, H., Fu, C.L., Feng, X.L.: An optimal filtering method for the Cauchy problem of the Helmholtz equation. Appl. Math. Lett. 24, 958–964 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feng, X.L., Fu, C.L., Cheng, H.: A regularization method for solving the Cauchy problem for the Helmholtz equation. Appl. Math. Model. 35, 3301–3315 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fu, C.L., Feng, X.L., Qian, Z.: The Fourier regularization for solving the Cauchy problem for the Helmholtz equation. Appl. Numer. Math. 59, 2625–2640 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jin, B.T., Marin, L.: The plane wave method for inverse problems associated with Helmholtz-type equations. Eng. Anal. Bound. Elem. 32, 223–240 (2008)

    Article  MATH  Google Scholar 

  17. Jin, B.T., Zheng, Y.: Boundary knot method for some inverse problems associated with the Helmholtz equation. Int. J. Numer. Methods Eng. 62, 1636–1651 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Marin, L., Elliott, L., Heggs, P.J., Ingham, D.B., Lesnic, D., Wen, X.: Conjugate gradient-boundary element solution to the Cauchy problem for Helmholtz-type equations. Comput. Mech. 31, 367–377 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Marin, L., Elliott, L., Heggs, P.J., Ingham, D.B., Lesnic, D., Wen, X.: BEM solution for the Cauchy problem associated with Helmholtz-type equations by the Landweber method. Eng. Anal. Bound. Elem. 28, 1025–1034 (2004)

    Article  MATH  Google Scholar 

  20. Marin, L., Elliott, L., Heggs, P.J., Ingham, D.B., Lesnic, D., Wen, X.: Comparison of regularization methods for solving the Cauchy problem associated with the Helmholtz equation. Int. J. Numer. Methods Eng. 60, 1933–1947 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marin, L., Lesnic, D.: The method of fundamental solutions for the Cauchy problem associated with two-dimensional Helmholtz-type equations. Comput. Struct. 83, 267–278 (2005)

    Article  MathSciNet  Google Scholar 

  22. Qin, H.H., Wei, T.: Modified regularization method for the Cauchy problem of the Helmholtz equation. Appl. Math. Model. 33, 2334–2348 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Regińska, T., Wakulicz, A.: Wavelet moment method for the Cauchy problem for the Helmholtz equation. J. Comput. Appl. Math. 223, 218–229 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sun, Y., Zhang, D.Y., Ma, F.M.: A potential function method for the Cauchy problem of elliptic operators. J. Math. Anal. Appl. 395, 164–174 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wei, T., Hon, Y.C., Ling, L.: Method of fundamental solutions with regularization techniques for Cauchy problems of elliptic operators. Eng. Anal. Bound. Elem. 31, 373–385 (2007)

    Article  MATH  Google Scholar 

  26. Xiong, X.T., Zhao, X.C., Wang, J.X.: Spectral Galerkin method and its application to a Cauchy problem of Helmholtz equation. Numer. Algorithms 63, 691–711 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, H.W., Qin, H.H., Wei, T.: A quasi-reversibility regularization method for the Cauchy problem of the Helmholtz equation. Int. J. Comput. Math. 88, 839–850 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xiong, X.T.: A regularization method for a Cauchy problem of the Helmholtz equation. J. Comput. Appl. Math. 233, 1723–1732 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Han, H., Reinhardt, H.J.: Some stability estimates for Cauchy problems for elliptic equations. J. Inverse Ill-Posed Probl. 5, 437–454 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tautenhahn, U.: Optimal stable solution of Cauchy problems for elliptic equations. J. Anal. Appl. 15, 961–984 (1996)

    MathSciNet  MATH  Google Scholar 

  31. Cheng, J., Yamamoto, M.: One new strategy for a priori choice of regularizing parameters in Tikhonov’s regularization. Inverse Probl. 16, L31–L38 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kabanikhin, S.I., Schieck, M.: Impact of conditional stability: convergence rates for general linear regularization methods. J. Inverse Ill-Posed Probl. 16, 267–282 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Hào, D.N., Van Duc, N., Lesnic, D.: A non-local boundary value problem method for the Cauchy problem for elliptic equations. Inverse Probl. 25, 055002 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wei, T., Qin, H.H., Zhang, H.W.: Convergence estimates for some regularization methods to solve a Cauchy problem of the Laplace equation. Numer. Math. Theor. Methods Appl. 4, 459–477 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Qin, H.H., Wei, T.: Some filter regularization methods for a backward heat conduction problem. Appl. Math. Comput. 217, 10317–10327 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Showalter, R.E.: Cauchy problem for hyper-parabolic partial differential equations. In: Lakshmikantham, V. (ed.) Trends in the Theory and Practice of Non-Linear Analysis. Elsevier, North-Holland (1985)

    Google Scholar 

  37. Ames, K.A., Clark, G.W., Epperson, J.F., Oppenheimer, S.F.: A comparison of regularizations for an ill-posed problem. Math. Comput. 67, 1451–1471 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers’ valuable comments and suggestions that have improved our manuscript. The work described in this paper was supported in part by the Fundamental Research Funds for the Central Universities (2015QNA49).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haihua Qin.

Additional information

Communicated by Dongwoo Sheen.

Appendices

Appendix 1

Proof to Lemma 2.2

The proof is inspired by the idea of [13]. The condition \(\left\| v(\cdot ,1)\right\| \le E\) leads to

$$\begin{aligned} \frac{\pi }{2}\sum _{n=1}^{\infty }b_n^2\cosh ^2\left( \sqrt{n^2-k^2}\right) \le E^2. \end{aligned}$$
(7.1)

The condition \(\left\| \phi \right\| \le \varepsilon \) means

$$\begin{aligned} \frac{\pi }{2}\sum _{n=1}^{\infty }b_n^2 \le \varepsilon ^2.\quad \end{aligned}$$
(7.2)

Now define a function \(\tau _1(y)\) as

$$\begin{aligned} \tau _1(y)= \left\{ \begin{aligned}&\cos \left( \sqrt{k^2-n^2}y\right) ,\quad 1\le n<k,\\&\cosh \left( \sqrt{n^2-k^2}y\right) ,\quad [k]+1\le n<N_1,\\&m_1(y),\quad n\ge N_1,\\ \end{aligned} \right. \end{aligned}$$

where \(N_1=\min \left\{ n|\cosh \left( \sqrt{n^2-k^2}y\right) \ge m_1(y), n>k\right\} \) and \(m_1(y)=(1-y)(2E)^y\varepsilon ^{-y}\). Denote \(\xi =\sqrt{n^2-k^2}\) for \(n>k\). From (2.3), we have

$$\begin{aligned} v(x,y)= & {} \sum _{n=1}^\infty b_n \sin (n x) \cosh (\xi y)-\sum _{n=1}^\infty b_n \sin (n x) \tau _1(y)+\sum _{n=1}^\infty b_n \sin (n x) \tau _1(y)\\= & {} \sum _{n=N_1}^\infty b_n\sin (n x) \left( \cosh (\xi y)-m_1(y)\right) +\sum _{n=1}^\infty b_n \sin (n x) \tau _1(y). \end{aligned}$$

Further, from (7.1) and (7.2), we have

$$\begin{aligned} \left\| v(\cdot ,y) \right\|\le & {} \left( \frac{\pi }{2}\sum _{n=N_1}^\infty b_n^2 \cosh ^2(\xi )\left( \frac{\cosh (\xi y)-m_1(y)}{\cosh (\xi )}\right) ^2\right) ^{\frac{1}{2}}+\left( \frac{\pi }{2}\sum _{n=1}^\infty b_n^2\tau _1^2( y)\right) ^{\frac{1}{2}}\\\le & {} E\sup _{n\ge N_1}A_1(n) + \varepsilon \sup _{n\ge 1} \left| \tau _1(y)\right| , \end{aligned}$$

where

$$\begin{aligned} A_1(n)=\left| \frac{\cosh (\xi y)-m_1(y)}{\cosh (\xi )}\right| . \end{aligned}$$

In the following, we estimate \(A_1(n)\).

$$\begin{aligned} A_1(n)=\frac{\mathrm{{e}}^{\xi y}+\mathrm{{e}}^{-\xi y}-2m_1(y)}{\mathrm{{e}}^\xi +\mathrm{{e}}^{-\xi }}\le \frac{2\left( \mathrm{{e}}^{\xi y}-m_1(y)\right) }{\mathrm{{e}}^\xi }. \end{aligned}$$

Note that \(F(\xi )=\frac{\mathrm{{e}}^{\xi y}-m_1(y)}{\mathrm{{e}}^\xi }\) over \(\xi >0\) attains its maximum \(F_{\mathrm{{max}}}=y(1-y)^{\frac{1}{y}-1}\left( m_1(y)\right) ^{-\left( \frac{1}{y}-1\right) }\), then we have

$$\begin{aligned} A_1(n)\le 2y(1-y)^{\frac{1}{y}-1}\left( m_1(y)\right) ^{-\left( \frac{1}{y}-1\right) }. \end{aligned}$$

Meanwhile, note that \(\left| \tau _1(y)\right| \le m_1(y)\) for \(n>k\), thus we have

$$\begin{aligned} \left\| v(\cdot ,y) \right\| \le 2Ey(1-y)^{\frac{1}{y}-1}\left( m_1(y)\right) ^{-\left( \frac{1}{y}-1\right) }+\varepsilon m_1(y). \end{aligned}$$
(7.3)

It is easy to check that the function \(F_1(m_1)=2Ey(1-y)^{\frac{1}{y}-1}\left( m_1(y)\right) ^{-\left( \frac{1}{y}-1\right) }+\varepsilon m_1(y)\) reaches its minimum at \(m_1(y)=(1-y)(2E)^y\varepsilon ^{-y}\). Hence, by (7.3), we have

$$\begin{aligned} \left\| v(\cdot ,y)\right\| \le \left( 2E\right) ^y\varepsilon ^{1-y}\le 2E^y\varepsilon ^{1-y}. \end{aligned}$$

\(\square \)

Appendix 2

Proof to Lemma 2.3

The condition \(\left\| w(\cdot ,1)\right\| \le E\) is equivalent to

$$\begin{aligned} \frac{\pi }{2}\sum _{n=1}^{\infty }c_n^2\frac{\sinh ^2 \left( \sqrt{n^2-k^2}\right) }{\left( \sqrt{n^2-k^2}\right) ^2}\le E^2. \end{aligned}$$
(8.1)

The condition \(\left\| \psi \right\| \le \varepsilon \) means

$$\begin{aligned} \frac{\pi }{2}\sum _{n=1}^{\infty }c_n^2 \le \varepsilon ^2.\quad \end{aligned}$$
(8.2)

Define the following function

$$\begin{aligned} \tau _2(y)= \left\{ \begin{aligned}&\frac{\sin \left( \sqrt{k^2-n^2}y\right) }{\sqrt{k^2-n^2}},\quad 1\le n<k,\\&\frac{\sinh \left( \sqrt{n^2-k^2}y\right) }{\sqrt{n^2-k^2}},\quad [k]+1\le n<N_2,\\&m_2(y),\quad n\ge N_2,\\ \end{aligned} \right. \end{aligned}$$

where \(N_2\!=\!\min \left\{ n\mid \frac{\sinh \left( \sqrt{n^2-k^2}y\right) }{\sqrt{n^2-k^2}} \ge m_2(y),n\!>\!k \right\} \), note that \(g(n)=\frac{\sinh \left( \sqrt{n^2-k^2}y\right) }{\sqrt{n^2-k^2}}\) is strictly monotonically increasing for \(n>k\), and \(m_2(y)=\left( 1-\mathrm{{e}}^{-2\rho }\right) ^{-y}(2\rho )^{-(1-y)}(1-y)E^y\varepsilon ^{-y}\), where \(\rho =\sqrt{\left( [k]+1\right) ^2-k^2}\). Taking the similar procedure of estimating \(\left\| v(\cdot ,y)\right\| \), from (2.4), (8.1) and (8.2), note that \(\left| \tau _2(y)\right| \le m_2(y)\) for \(n>k\), we have

$$\begin{aligned} \left\| w(\cdot ,y)\right\|\le & {} \left( \frac{\pi }{2}\sum _{n=N_2}^\infty c_n^2 \frac{\sinh ^2(\xi )}{\xi ^2}\left( \frac{\sinh (\xi y)-\xi m_2(y)}{\sinh (\xi )}\right) ^2\right) ^{\frac{1}{2}}\!+\left( \frac{\pi }{2}\sum _{n=1}^\infty c_n^2\tau _2^2( y)\right) ^{\frac{1}{2}}\\\le & {} E\sup _{n\ge N_2}A_2(n) + \varepsilon m_2(y), \end{aligned}$$

where

$$\begin{aligned} A_2(n)=\left| \frac{\sinh (\xi y)-\xi m_2(y)}{\sinh (\xi )}\right| . \end{aligned}$$

Now we firstly estimate \(A_2(n)\).

$$\begin{aligned} A_2(n)=\frac{\mathrm{{e}}^{\xi y}-\mathrm{{e}}^{-\xi y}-2\xi m_2(y)}{\mathrm{{e}}^\xi -\mathrm{{e}}^{-\xi }}\le \frac{\mathrm{{e}}^{\xi y}-2\rho m_2(y)}{\mathrm{{e}}^\xi (1-\mathrm{{e}}^{-2\rho })}. \end{aligned}$$

By a simple calculation, we can obtain that \(G(\xi )=\frac{\mathrm{{e}}^{\xi y}-2\rho m_2(y)}{\mathrm{{e}}^\xi }\) over \(\xi >0\) attains its maximum \(G_{\max }=(2\rho )^{-(\frac{1}{y}-1)} y(1-y)^{\frac{1}{y}-1}\left( m_2(y)\right) ^{-\left( \frac{1}{y}-1\right) }\). Then, we have

$$\begin{aligned} \left\| w(\cdot ,y)\right\| \le \left( 1-\mathrm{{e}}^{-2\rho }\right) ^{-1}(2\rho )^{-(\frac{1}{y}-1)}E y(1-y)^{\frac{1}{y}-1}\left( m_2(y)\right) ^{-\left( \frac{1}{y}-1\right) }+\varepsilon m_2(y). \end{aligned}$$
(8.3)

It is easy to check that the function \(F_2(m_2)=\left( 1-\mathrm{{e}}^{-2\rho }\right) ^{-1}(2\rho )^{-(\frac{1}{y}-1)}Ey(1-y)^{\frac{1}{y}-1}\left( m_2(y)\right) ^{-\left( \frac{1}{y}-1\right) }+\varepsilon m_2(y)\) reaches its minimum at \(m_2(y)=\left( 1-\mathrm{{e}}^{-2\rho }\right) ^{-y}(1-y)(2\rho )^{-(1-y)}E^y\varepsilon ^{-y}\). Hence, using the inequality \(1-\mathrm{{e}}^{-r}\le r\) for \(r \ge 0\), we obtain

$$\begin{aligned} \left\| w(\cdot ,y) \right\| \le \left( 1-e^{-2\rho }\right) ^{-y}(2\rho )^{-(1-y)}E^y\varepsilon ^{1-y}\le \left( 1-e^{-2\rho }\right) ^{-1}E^y\varepsilon ^{1-y}. \end{aligned}$$

\(\square \)

Appendix 3

Proof to Theorem 2.5

In the following, we firstly estimate \(\Vert v(\cdot , 1)\Vert \), whose proof is inspired by the idea of paper [22]. By (2.3), the condition \(\left\| \frac{\partial ^p v(\cdot ,1)}{\partial y^p} \right\| \le E_p\) leads to

$$\begin{aligned} \left\{ \begin{aligned}&\frac{\pi }{2}\sum _{n=1}^{\infty }b_n^2\left( \sqrt{n^2-k^2}\right) ^{2p}\sinh ^2\left( \sqrt{n^2-k^2}\right) \le E_p^2,\quad p \; \text{ is } \text{ odd },\\&\frac{\pi }{2}\sum _{n=1}^{\infty }b_n^2\left( \sqrt{n^2-k^2}\right) ^{2p}\cosh ^2\left( \sqrt{n^2-k^2}\right) \le E_p^2,\quad p \; \text{ is } \text{ even }. \end{aligned} \right. \end{aligned}$$
(9.1)

Denote \(\zeta =\sqrt{k^2-n^2}\) for \(n \le k\), \(\xi =\sqrt{n^2-k^2}\) for \(n>k\), \(\nu =\left( \ln \left( \frac{E_p}{\varepsilon } \left( \ln \frac{E_p}{\varepsilon }\right) ^{-p}\right) \right) ^{-1}\) and \({\gamma }=\frac{\xi }{\sqrt{1+\nu ^2n^2}}\). Note that \(\frac{\cosh (\xi )}{\sinh (\xi )}=\frac{e^\xi +e^{-\xi }}{e^\xi \left( 1-e^{-2\xi }\right) }\le \frac{2}{1-\mathrm{{e}}^{-2\rho }}\), where \(\rho =\sqrt{\left( [k]+1\right) ^2-k^2}\).

For the case of \(k\ge 1\), from (2.3), (7.2) and (9.1), we have

$$\begin{aligned} \left\| v(\cdot ,1) \right\|\le & {} \left( \frac{\pi }{2}\sum _{n=1}^{[k]}b_n^2\cos ^2\left( \zeta \right) \right) ^{\frac{1}{2}}+ \left( \frac{\pi }{2}\sum _{n=[k]+1}^{\infty }b_n^2\left( \cosh (\xi )-\cosh (\gamma )\right) ^2\right) ^{\frac{1}{2}}\\&+\left( \frac{\pi }{2}\sum _{n=[k]+1}^{\infty }b_n^2 \cosh ^2(\gamma )\right) ^{\frac{1}{2}}\nonumber \\\le & {} \varepsilon +\frac{2E_p}{1-\mathrm{{e}}^{-2\rho }}\sup \limits _{n\ge [k]+1}B(n)+\varepsilon \sup \limits _{n\ge [k]+1} D(n), \end{aligned}$$

where

$$\begin{aligned} B(n)=\left| \frac{\cosh (\xi )-\cosh (\gamma )}{\xi ^p\cosh (\xi )}\right| , \quad D(n)=\left| \cosh (\gamma )\right| . \end{aligned}$$

For D(n), we have \(D(n) \le \mathrm{{e}}^{\gamma }\le \mathrm{{e}}^{\frac{1}{\nu }}\). In the following, we estimate B(n). Note that \(\xi > \gamma \), we have

$$\begin{aligned} B(n) = \frac{(\mathrm{{e}}^{\xi } - \mathrm{{e}}^{\gamma })-(\mathrm{{e}}^{\xi } - \mathrm{{e}}^{\gamma })/\mathrm{{e}}^{(\xi + \gamma )}}{(\mathrm{{e}}^\xi + \mathrm{{e}}^{-\xi })\xi ^{p}} \le \frac{\mathrm{{e}}^{\xi }-\mathrm{{e}}^{\gamma }}{\mathrm{{e}}^{\xi }\xi ^{p}}=\left( 1-\mathrm{{e}}^{-(\xi -\gamma )}\right) \xi ^{-p}. \end{aligned}$$

Case 1 For large values of n with \(\xi =\sqrt{n^2 -k^2} \ge \nu ^{-\frac{2}{3}}\), we have

$$\begin{aligned} B(n)\le \xi ^{-p} \le \nu ^{\frac{2p}{3}}. \end{aligned}$$

Case 2 For \(\xi < \nu ^{-\frac{2}{3}}\), note that \(\xi -\gamma \le \frac{1}{2} \nu ^2 n^2\xi \) and \(1-\mathrm{{e}}^{-r}\le r\) for \(r\ge 0\) , we have

$$\begin{aligned} B(n) \le (\xi -\gamma )\xi ^{-p}\le \frac{1}{2}\nu ^2n^2\xi ^{1-p} = \frac{1}{2}\nu ^2\xi ^{3-p} + \frac{1}{2}\nu ^2 k^2 \xi ^{1-p}, \end{aligned}$$
(9.2)
  1. (1)

    For \(n=[k]+1\), by (9.2), \(B(n) \le \frac{1}{2}\nu ^2([k]+1)^2\rho ^{1-p}\);

  2. (2)

    For \(n >[k]+1\), by (9.2), note that \(\xi >1\),

  3. (a)

    If \(0< p <3\), \(B(n) \le \frac{1}{2}(1+k^2)\nu ^2 \xi ^{3-p} \le \frac{1}{2}(1+k^2)\nu ^{\frac{2p}{3}}\);

  4. (b)

    If \(p \ge 3\), \(B(n) \le \frac{1}{2}(1+k^2)\nu ^2\).

Hence, by cases 1 and 2, we obtain that

$$\begin{aligned} B(n) \le \max {\left\{ \nu ^{\frac{2p}{3}}, \frac{1}{2}\nu ^2([k]+1)^2\rho ^{1-p}, \frac{1}{2}(1+k^2)\nu ^{\frac{2p}{3}},\frac{1}{2}(1+k^2)\nu ^2 \right\} }. \end{aligned}$$
(9.3)

Now combining the above discussion, we have

$$\begin{aligned} \left\| v(\cdot ,1) \right\|\le & {} \varepsilon +\frac{E_p}{1-\mathrm{{e}}^{-2\rho }}\max {\left\{ 2\nu ^{\frac{2p}{3}}, \nu ^2([k]+1)^2\rho ^{1-p}, (1+k^2)\nu ^{\frac{2p}{3}},(1+k^2)\nu ^2 \right\} }\nonumber \\&+ \frac{E_p}{\left( \ln {\frac{E_p}{\varepsilon }}\right) ^{p}}. \end{aligned}$$
(9.4)

For the case of \( 0 < k < 1\), the first term in the right-hand side of Eq. (9.4) can be vanished.

Now we estimate \(\Vert w(\cdot , 1)\Vert \). By (2.4), the condition \(\left\| \frac{\partial ^p w(\cdot ,1)}{\partial y^p} \right\| \le E_p\) leads to

$$\begin{aligned} \left\{ \begin{aligned}&\frac{\pi }{2}\sum _{n=1}^{\infty }c_n^2\left( \sqrt{n^2-k^2}\right) ^{2p}\frac{\cosh ^2\left( \sqrt{n^2-k^2}\right) }{\left( \sqrt{n^2-k^2}\right) ^2}\le E_p^2,\quad p \; \text{ is } \text{ odd },\\&\frac{\pi }{2}\sum _{n=1}^{\infty }c_n^2\left( \sqrt{n^2-k^2}\right) ^{2p}\frac{\sinh ^2\left( \sqrt{n^2-k^2}\right) }{\left( \sqrt{n^2-k^2}\right) ^2}\le E_p^2,\quad p \; \text{ is } \text{ even }. \end{aligned} \right. \end{aligned}$$
(9.5)

Taking the similar procedure of estimating \(\left\| v(\cdot ,1)\right\| \), when \(k\ge 1\), recalling that \(\gamma =\xi /\sqrt{1+\nu ^2n^2}\), we have

$$\begin{aligned} \left\| w(\cdot ,1) \right\|\le & {} \left( \frac{\pi }{2}\sum _{n=1}^{[k]}c_n^2\frac{\sin ^2\left( \zeta \right) }{\zeta ^2}\right) ^{\frac{1}{2}}+\left( \frac{\pi }{2}\sum _{n=[k]+1}^{\infty }c_n^2\left( \frac{\sinh (\xi )}{\xi }-\frac{\sinh (\gamma )}{\gamma }\right) ^2\right) ^{\frac{1}{2}}\nonumber \\&+\left( \frac{\pi }{2}\sum _{n=[k]+1}^{\infty }c_n^2\left( \frac{\sinh (\gamma )}{\gamma }\right) ^2\right) ^{\frac{1}{2}}\nonumber \\\le & {} \varepsilon +E_p\sup \limits _{n\ge [k]+1}B_1(n)+\varepsilon \sup \limits _{n\ge [k]+1}D_1(n), \end{aligned}$$
(9.6)

where

$$\begin{aligned} B_1(n)= \left| \frac{\sinh (\xi )-\sqrt{1+\nu ^2n^2}\sinh (\gamma )}{\xi ^p\sinh (\xi )}\right| ,\quad D_1(n)=\left| \frac{\sinh (\gamma )}{\gamma }\right| . \end{aligned}$$

Recalling that \(1-\mathrm{{e}}^{-r}\le r\) for \(r\ge 0\), we have

$$\begin{aligned} D_1(n)=\frac{\mathrm{{e}}^\gamma (1-\mathrm{{e}}^{-2\gamma })}{2\gamma }\le \mathrm{{e}}^\gamma \le \mathrm{{e}}^{\frac{1}{\nu }}. \end{aligned}$$
(9.7)

In the following, we estimate \(B_1(n)\).

Case 1 For large values of n with \(\xi =\sqrt{n^2 -k^2} \ge \nu ^{-\frac{2}{3}}\), using Taylor expansion \(\sinh (s)=\sum _{n=1}^{\infty }\frac{s^{2n-1}}{(2n-1)!}\), recalling that \(\gamma =\xi /\sqrt{1+\nu ^2n^2}\), we get \(\sqrt{1+\nu ^2n^2}\frac{\sinh (\gamma )}{\sinh (\xi )}<1\), hence

$$\begin{aligned} B_1(n)=\xi ^{-p}\left( 1-\sqrt{1+\nu ^2n^2}\frac{\sinh (\gamma )}{\sinh (\xi )}\right) \le \xi ^{-p}\le \nu ^{\frac{2}{3}p}. \end{aligned}$$
(9.8)

Case 2 For \(\xi <\nu ^{-\frac{2}{3}}\), we have

$$\begin{aligned} B_1(n)\le \xi ^{-p}\left( C_1(n)+C_2(n)\right) , \end{aligned}$$
(9.9)

where \(C_1(n)=\left| \frac{\sinh (\xi )-\sinh (\gamma )}{\sinh (\xi )}\right| \) and \(C_2(n)=\left| \frac{\sinh (\gamma )-\sqrt{1+\nu ^2n^2}\sinh (\gamma )}{\sinh (\xi )}\right| \). Now let us estimate \(C_1(n)\). Recalling that \(\xi -\gamma \le \frac{1}{2}\nu ^2n^2\xi \), we have

$$\begin{aligned} C_1(n)= & {} \frac{\mathrm{{e}}^\xi -\mathrm{{e}}^\gamma -\left( \mathrm{{e}}^{-\xi }-\mathrm{{e}}^{-\gamma } \right) }{\mathrm{{e}}^\xi \left( 1-\mathrm{{e}}^{-2\xi }\right) }\le \frac{ \left( \mathrm{{e}}^\xi -\mathrm{{e}}^\gamma \right) \left( 1+\mathrm{{e}}^{-(\xi +\gamma )}\right) }{\mathrm{{e}}^\xi (1-\mathrm{{e}}^{-2\rho })}\le \frac{2\left( 1-\mathrm{{e}}^{-(\xi -\gamma )}\right) }{1-\mathrm{{e}}^{-2\rho }}\nonumber \\\le & {} 2\left( 1-\mathrm{{e}}^{-2\rho }\right) ^{-1}(\xi -\gamma )\le \left( 1-\mathrm{{e}}^{-2\rho }\right) ^{-1}\xi n^2\nu ^2. \end{aligned}$$
(9.10)

Next we estimate \(C_2(n)\). Recalling that \(\sqrt{1+\nu ^2n^2}\le 1+\frac{1}{2}\nu ^2n^2\), and by (9.7), we have

$$\begin{aligned} C_2(n)=\frac{\left( \sqrt{1+\nu ^2n^2}-1\right) \gamma \sinh {(\gamma )}/\gamma }{\mathrm{{e}}^\xi (1-\mathrm{{e}}^{-2\xi })/2}\le \frac{\nu ^2n^2\xi \mathrm{{e}}^\gamma }{\mathrm{{e}}^\xi (1-\mathrm{{e}}^{-2\rho })}\le (1-\mathrm{{e}}^{-2\rho })^{-1}\xi n^2\nu ^2. \end{aligned}$$
(9.11)

Combining (9.9)–(9.11), by (9.2), for \(\xi <\nu ^{-\frac{2}{3}}\), we obtain

$$\begin{aligned} B_1(n)\le & {} 2(1-\mathrm{{e}}^{-2\rho })^{-1}\xi ^{1-p} n^2\nu ^2\nonumber \\\le & {} 4(1-\mathrm{{e}}^{-2\rho })^{-1}\max {\left\{ \frac{1}{2}\nu ^2([k]+1)^2\rho ^{1-p}, \frac{1}{2}(1+k^2)\nu ^{\frac{2p}{3}},\frac{1}{2}(1+k^2)\nu ^2 \right\} }.\nonumber \\ \end{aligned}$$
(9.12)

Further, from (9.8) and (9.12), we obtain

$$\begin{aligned} B_1(n)\!\le \!4(1-\mathrm{{e}}^{-2\rho })^{-1}\max {\left\{ \nu ^{\frac{2p}{3}}, \frac{1}{2}\nu ^2([k]\,{+}\,1)^2\rho ^{1-p}, \frac{1}{2}(1\,{+}\,k^2)\nu ^{\frac{2p}{3}},\frac{1}{2}(1\,{+}\,k^2)\nu ^2 \right\} }. \end{aligned}$$
(9.13)

Hence, from (9.6)–(9.7) and (9.13), we have

$$\begin{aligned} \left\| w(\cdot ,1) \right\|\le & {} \varepsilon \!+\!\frac{2E_p}{1-\mathrm{{e}}^{-2\rho }}\max {\left\{ 2\nu ^{\frac{2p}{3}}, \nu ^2([k]+1)^2\rho ^{1-p}, (1+k^2)\nu ^{\frac{2p}{3}},(1+k^2)\nu ^2 \right\} }\nonumber \\&+ \, \frac{E_p}{\left( \ln {\frac{E_p}{\varepsilon }}\right) ^{p}}. \end{aligned}$$
(9.14)

For the case of \( 0 < k < 1\), the first term in the right-hand side of Eq. (9.14) can be vanished.

Finally, using the triangle inequality \(\left\| u(\cdot ,1)\right\| \le \left\| v(\cdot ,1)\right\| +\left\| w(\cdot ,1)\right\| \), by (9.4) and (9.14), the stability result (2.11) can directly be obtained. \(\square \)

Appendix 4

Theorem 9.1

Let \(u=v+w\) be the exact solution of problem (1.1) with the exact data \(\left( \phi , \psi \right) \) and \(u_\alpha ^\delta =v_\alpha ^\delta +w_\alpha ^\delta \) be the regularized solution with the filter function q given by (4.1). Further, let the measured data \(\phi ^\delta \), \(\psi ^\delta \) satisfy (1.2) and assume that the a-priori bound assumption (2.10) holds. Choose the regularization parameter \(\alpha \) as

$$\begin{aligned} \alpha =\left( \frac{\delta }{E_p}\right) ^{4/5}. \end{aligned}$$
(10.1)

Then, at \(y=1\), for \(k>0\), we have

$$\begin{aligned}&\left\| u_\alpha ^\delta (\cdot ,1)-u(\cdot ,1) \right\| \nonumber \\&\quad \le 2\left( \delta + \delta ^{\frac{1}{5}}E_p^{\frac{4}{5}} + \frac{2E_p}{1-\mathrm{{e}}^{-2\rho }}\max \left\{ \rho ^{-p} \left( \frac{\delta }{E_p}\right) ^{\frac{8}{15}}, 2\left( \frac{4}{15}\ln \frac{E_p}{\delta }\right) ^{-p}\right\} \right) ,\nonumber \\ \end{aligned}$$
(10.2)

where \(\rho =\sqrt{([k]+1)^2-k^2}\).

Proof

From the proof of Theorem 3.2 in [27], we have

$$\begin{aligned} \left\| v_\alpha ^\delta (\cdot ,1)-v(\cdot ,1)\right\| \le \delta +\frac{\delta }{\alpha }+\frac{2E_p}{1-\mathrm{{e}}^{-2\rho }}\max \left\{ \rho ^{-p} \alpha ^{\frac{2}{3}}, 2\left( \ln \frac{1}{\root 3 \of {\alpha }}\right) ^{-p}\right\} . \end{aligned}$$

For \(n>k\), note that \(\xi =\sqrt{n^2-k^2}>0\) and \(\sinh {(\xi )}/\xi \le \cosh {(\xi )}\), then similar to the proof of Theorem 3.2 in [27], we have

$$\begin{aligned} \left\| w_\alpha ^\delta (\cdot ,1)-w(\cdot ,1)\right\| \le \delta +\frac{\delta }{\alpha }+\frac{2E_p}{1-\mathrm{{e}}^{-2\rho }}\max \left\{ \rho ^{-p} \alpha ^{\frac{2}{3}}, 2\left( \ln \frac{1}{\root 3 \of {\alpha }}\right) ^{-p}\right\} . \end{aligned}$$

Further, by (10.1), using the triangle inequality \(\left\| u_\alpha ^\delta (\cdot ,1)-u(\cdot ,1)\right\| \le \left\| v_\alpha ^\delta (\cdot ,1)-\right. \left. v(\cdot ,1)\right\| + \left\| w_\alpha ^\delta (\cdot ,1)-w(\cdot ,1)\right\| \), the conclusion (10.2) can be obtained. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, H., Lu, J. A Modified Method for a Cauchy Problem of the Helmholtz Equation. Bull. Malays. Math. Sci. Soc. 40, 1493–1522 (2017). https://doi.org/10.1007/s40840-015-0148-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-015-0148-7

Keywords

Mathematics Subject Classification

Navigation