Approximation of q-Stancu-Beta Operators Which Preserve \(x^2\)



In this paper, we study some approximation properties of q-analogue of Stancu-Beta operators which preserve \(x^{2}\). We determine the rate of global convergence in weighted spaces. We also prove the Voronovskaja-type theorem for these operators.


q-Analogue of Stancu-Beta operators Modulus of continuity Voronovskaja-type theorem Korovkin-type approximation theorem 

Mathematics Subject Classification

41A10 41A25 41A36 


  1. 1.
    Agratini, O.: Linear operators that preserve some test functions. Int. J. Math. Sci. 11 (2006). doi: 10.1155/IJMMS
  2. 2.
    Altomare, F., Campiti, M.: Korovkin-type Approximation Theory and Its Applications, de Gruyter Stud. Math., vol. 17. de Gruyter & Co., Berlin (1994)CrossRefMATHGoogle Scholar
  3. 3.
    Aral, A., Gupta, V.: On \(q\)-analogue of Stancu-Beta operators. Appl. Math. Lett. 25, 67–71 (2012)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Aral, A., Gupta, V., Agarwal, R.P.: Applications of \(q\)-Calculus in Operator Theory. Springer, New York (2013)CrossRefMATHGoogle Scholar
  5. 5.
    Cai, Q.-B.: Approximation properties of the modification of \(q\) -Stancu-Beta operators which preserve \(x^{2}\). J. Inequal. Appl. 2014, 505 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    De Sole, A., Kac, V.G.: On integral representations of \(q\) -gamma and \(q\)-beta functions. Rendiconti di Matematica Accademia Lincei Series (9) 16(1), 11–29 (2005)MathSciNetMATHGoogle Scholar
  7. 7.
    Duman, O., Özarslan, M.A.: Szász–Mirakjan type operators providing a better error estimation. Appl. Math. Lett. 20, 1184–1188 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kac, V., Cheung, P.: Quantum Calculus. Springer, New York (2002)CrossRefMATHGoogle Scholar
  9. 9.
    King, J.P.: Positive linear operators which preserve \(x^{2}\). Acta Math. Hung. 99(3), 203–208 (2003)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Koornwinder, T.H.: \(q\)-special functions, a tutorial. In: Gerstenhaber, M., Stasheff, J. (eds.) Deformation Theory and Quantum Groups with Applications to Mathematical Physics. Contemp. Math., vol. 134. American Mathematical Society, Providence (1992)Google Scholar
  11. 11.
    Korovkin, P.P.: Linear Operators and Approximation Theory. Hindustan Publishing Corporation, Delhi (1960)Google Scholar
  12. 12.
    López-Moreno, A.-J.: Weighted simultaneous approximation with Baskakov type operators. Acta Math. Hung. 104(1–2), 143–151 (2004)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Mahmudov, N.I.: \(q\)-Szász–Mirakjan operators which preserve \(x^{2}\). J. Comput. Appl. Math. 235, 4621–4628 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Mursaleen, M., Khan, Asif, Srivastava, H.M., Nisar, K.S.: Operators constructed by means of \(q\)-Lagrange polynomials and \(A\) -statistical approximation. Appl. Math. Comput. 219, 6911–6918 (2013)MathSciNetMATHGoogle Scholar
  15. 15.
    Mursaleen, M., Khan, Asif: Statistical approximation properties of modified \(q\)-Stancu-Beta operators. Bull. Malays. Math. Sci. Soc. (2) 36(3), 683–690 (2013)MathSciNetMATHGoogle Scholar
  16. 16.
    Mursaleen, M., Khan, A.: Generalized \(q\)-Bernstein-Schurer operators and some approximation theorems. J. Funct. Spaces Appl. 2013(719834), 7 (2013)MathSciNetMATHGoogle Scholar
  17. 17.
    Rempulska, L., Tomczak, K.: Approximation by certain linear operators preserving \(x^{2}\). Turkish J. Math. 33, 273–281 (2009)MathSciNetMATHGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Universiti Sains Malaysia 2015

Authors and Affiliations

  1. 1.Department of MathematicsAligarh Muslim UniversityAligarhIndia

Personalised recommendations