Existence and Multiplicity of Solutions for p(x)-LaplacianEquations in \({\mathbb {R}}^N\)

  • Ying Li
  • Lin Li


This article concerns the existence and multiplicity of solutions to a class of p(x)-Laplacian-like equations. We introduce a revised Ambrosetti–Rabinowitz condition, and show that the problem has a nontrivial solution and infinitely many solutions, respectively.


p(x)-Laplacian-like operator Variational method Radial solution Ambrosetti–Rabinowitz condition 

Mathematics Subject Classification

35J60 35J20 47J30 58E30 



The authors are very grateful to the anonymous referees for their knowledgeable reports, which helped us to improve our manuscript.


  1. 1.
    Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Dai, G.: Infinitely many solutions for a \(p(x)\)-Laplacian equation in \(\mathbb{R}^N\). Nonlinear Anal. 71(3–4), 1133–1139 (2009)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Fan, X., Han, X.: Existence and multiplicity of solutions for \(p(x)\)-Laplacian equations in \({\bf R}^N\). Nonlinear Anal. 59(1–2), 173–188 (2004)MathSciNetMATHGoogle Scholar
  4. 4.
    Fan, X., Shen, J., Zhao, D.: Sobolev embedding theorems for spaces \(W^{k, p(x)}(\Omega )\). J. Math. Anal. Appl. 262(2), 749–760 (2001)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Fan, X., Zhao, D.: On the spaces \(L^{p(x)}(\Omega )\) and \(W^{m, p(x)}(\Omega )\). J. Math. Anal. Appl. 263(2), 424–446 (2001)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Gasiński, L., Papageorgiou, N.S.: Anisotropic nonlinear Neumann problems. Calc. Var. Partial Differ. Equ. 42(3–4), 323–354 (2011)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Gasiński, L., Papageorgiou, N.S.: A pair of positive solutions for the Dirichlet \(p(z)\)-Laplacian with concave and convex nonlinearities. J. Glob. Optim. 56(4), 1347–1360 (2013)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kristály, A., Rădulescu, V. D., Varga, C. G.: Variational principles in mathematical physics, geometry, and economics, volume 136 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, (2010). Qualitative analysis of nonlinear equations and unilateral problems, With a foreword by Jean MawhinGoogle Scholar
  9. 9.
    Kristály, A., Varga, C.: On a class of quasilinear eigenvalue problems in \({\bf R}^N\). Math. Nachr. 278(15), 1756–1765 (2005)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Li, L., Chen, S.-J.: Existence and multiplicity of solutions for a class of \(p\)-Laplacian equations. Appl. Math. Lett. 27, 59–63 (2014)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Li, L., Ding, L., Pan, W.-W.: Existence of multiple solutions for a \(p(x)\)-biharmonic equation. Electron. J. Differ. Equ. 139, 10 (2013)MathSciNetMATHGoogle Scholar
  12. 12.
    Li, L., Tang, C.: Existence and multiplicity of solutions for a class of \(p(x)\)-biharmonic equations. Acta Math. Sci. Ser. B Engl. Ed. 33(1), 155–170 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ni, W.-M., Serrin, J.: Nonexistence theorems for quasilinear partial differential equations. In: Proceedings of the conference commemorating the 1st centennial of the Circolo Matematico di Palermo (Italian) (Palermo, 1984), number 8, pp. 171–185 (1985)Google Scholar
  14. 14.
    Pan, W.-W., Afrouzi, G.A., Li, L.: Three solutions to a \(p(x)\)-Laplacian problem in weighted-variable-exponent Sobolev space. An. Ştiinţ. Univ. ”Ovidius” Constanţa Ser. Math. 21(2), 195–205 (2013)MathSciNetMATHGoogle Scholar
  15. 15.
    Rabinowitz, P. H.: Minimax methods in critical point theory with applications to differential equations, volume 65 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (1986)Google Scholar
  16. 16.
    Rodrigues, M.M.: Multiplicity of solutions on a nonlinear eigenvalue problem for \(p(x)\)-Laplacian-like operators. Mediterr. J. Math. 9(1), 211–223 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    R\(\mathring{{\rm u}}\)žička, M.: Modeling, mathematical and numerical analysis of electrorheological fluids. Appl. Math. 49(6), 565–609 (2004)Google Scholar
  18. 18.
    Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Math. 50(4), 710–877 (1986)MathSciNetGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Universiti Sains Malaysia 2015

Authors and Affiliations

  1. 1.Department of Mathematics and System Science, College of ScienceNational University of Defense TechnologyChangshaChina
  2. 2.School of Mathematics and StatisticsChongqing Technology and Business UniversityChongqingChina

Personalised recommendations