Skip to main content
Log in

Effects of Na2O and CaCl2 on the Crystallization and Mechanical Properties of CaO-MgO-Al2O3-SiO2 Glass–Ceramics

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

In this paper, we respectively added 5 wt% of Na2O and CaCl2 to the CaO–MgO–Al2O3–SiO2 base glass, aiming to analyze the effect of the types of flux, CaCl2, and traditional flux Na2O, on the crystallization behavior and mechanical properties of the sintered glass–ceramics. Besides, 1 wt% of Cr2O3 was added as the nucleating agent to form the Cr-spinel nucleus and promote the bulk crystallization. The CaCl2-bearing glass–ceramics (GC-Cl) showed lower porosity and crystallinity compared with the Na2O-bearing glass–ceramics (GC-Na). After sintering at 950 °C for 1 h, the bending strength, Vickers hardness, and fracture toughness of GC-Cl were 163 MPa, 6.9 GPa, and 2.4 MPa·m1/2, respectively, while they are 191 MPa, 8.2 GPa, and 2.3 MPa·m1/2 for the GC-Na. Although the bending strength and hardness of GC-Cl are lower than that of GC-Na, adding CaCl2 as a flux may provide a route for the comprehensive utilization of CaCl2-bearing wastes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhu P, Cao ZB, Wang LY, Ye YL, Qian GR, Cao TH et al (2013) Recycling of calcium fluoride sludge as ceramic material using low temperature sintering technology. J Mater Cycles Waste Manag 16(1):156–161. https://doi.org/10.1007/s10163-013-0138-5

    Article  CAS  Google Scholar 

  2. Zanelli C, Baldi G, Dondi M, Ercolani G, Guarini G, Raimondo M (2008) Glass–ceramic frits for porcelain stoneware bodies: effects on sintering, phase composition and technological properties. Ceram Int 34(3):455–465. https://doi.org/10.1016/j.ceramint.2006.11.008

    Article  CAS  Google Scholar 

  3. Wang HY, Li Y, Jiao SQ, Zhang GH (2023) Preparation of glass-ceramic by low-pressure hot-pressing sintering of CaO-MgO-Al2O3-SiO2(-CaCl2) glass powder. J Eur Ceram Soc 43(15):7134–7145. https://doi.org/10.1016/j.jeurceramsoc.2023.07.057

    Article  CAS  Google Scholar 

  4. Sebastian MT, Wang H, Jantunen H (2016) Low temperature co-fired ceramics with ultra-low sintering temperature: a review. Curr Opin Solid State Mater Sci 20(3):151–170. https://doi.org/10.1016/j.cossms.2016.02.004

    Article  CAS  Google Scholar 

  5. Zhu W, Jiang H, Sun S, Jia S, Liu Y (2018) Effect of TiO2 content on the crystallization behavior and properties of CaO-Al2O3-SiO2 glass ceramic fillers for high temperature joining application. J Alloys Compd 732:141–148. https://doi.org/10.1016/j.jallcom.2017.10.166

    Article  CAS  Google Scholar 

  6. Toya T, Tamura Y, Kameshima Y, Okada K (2004) Preparation and properties of CaO–MgO–Al2O3–SiO2 glass-ceramics from kaolin clay refining waste (Kira) and dolomite. Ceram Int 30(6):983–989. https://doi.org/10.1016/j.ceramint.2003.11.005

    Article  CAS  Google Scholar 

  7. Wang HY, Li Y, Jiao SQ, Chou KC, Zhang GH (2023) Preparation and properties of diopside-based CaO-MgO-Al2O3-SiO2 glass-ceramic using biomass fly ash. J Non-Cryst Solids 600:122015. https://doi.org/10.1016/j.jnoncrysol.2022.122015

    Article  CAS  Google Scholar 

  8. Höland W, Beall GH (2019) Glass-ceramic technology, 3rd edn. Wiley, Hoboken

    Book  Google Scholar 

  9. Wang HY, Cao KQ, Li Y, Jiao SQ (2024) Zhang GH Enhanced performance of low-pressure sintered CaO–MgO–Al2O3–SiO2–CaCl2 glass-ceramic by using Cr2O3 as the nucleating agent. Ceram Int. https://doi.org/10.1016/j.ceramint.2024.01.322

    Article  Google Scholar 

  10. Shi Y, Li BW, Zhao M, Zhang MX (2018) Growth of diopside crystals in CMAS glass-ceramics using Cr2O3 as a nucleating agent. J Am Ceram Soc 101(9):3968–3978. https://doi.org/10.1111/jace.15700

    Article  CAS  Google Scholar 

  11. Ma P, Lindblom B, Borkman B (2005) Mechanism study on solid-state reduction in the Fe2O3–NiO–Cr2O3–C system using thermal analyses. Scand J Metall 34:22–30. https://doi.org/10.1111/j.1600-0692.2005.00715.x

    Article  CAS  Google Scholar 

  12. Wang HY, Jiao SQ, Zhang GH (2023) Preparation of ferrosilicochromium by silicothermic reduction of cr-bearing electroplating sludge. J Sustain Metall 9(1):303–313. https://doi.org/10.1007/s40831-023-00651-y

    Article  Google Scholar 

  13. Wang HY, Li Y, Jiao SQ, Zhang GH (2023) Preparation of Ni–Fe–S matte and Fe–Cr–Si alloy by the Co-treatments of stainless steel pickling sludge and electroplating sludge. Metall Mater Trans B 54:3229–3239. https://doi.org/10.1007/s11663-023-02903-4

    Article  CAS  Google Scholar 

  14. Wang HY, Zhang GH, Chou KC (2020) Preparation of low-carbon and low-sulfur Fe-Cr-Ni-Si alloy by using CaSO4-containing stainless steel pickling sludge. Metall Mater Trans B 51(5):2057–2067. https://doi.org/10.1007/s11663-020-01922-9

    Article  CAS  Google Scholar 

  15. Hou Y, Wang Y, Zhang GH, Chou KC (2021) Preparation of fully dense and magnetically controllable CaO–Al2O3–SiO2–Na2O–Fe3O4 glass ceramics by hot pressing. J Eur Ceram Soc 41(10):5201–5213. https://doi.org/10.1016/j.jeurceramsoc.2021.04.024

    Article  CAS  Google Scholar 

  16. Li T, Wang J, Ruan J, Liu C, Han J (2021) Crystallization behavior of transparent Na2O-Al2O3-SiO2 glass-ceramic containing rare-earth oxides. J Non-Cryst Solids. https://doi.org/10.1016/j.jnoncrysol.2021.120935

    Article  Google Scholar 

  17. Ma M, Ni W, Wang Y, Wang Z, Liu F (2008) The effect of TiO2 on phase separation and crystallization of glass-ceramics in CaO–MgO–Al2O3–SiO2–Na2O system. J Non-Cryst Solids 354(52–54):5395–5401. https://doi.org/10.1016/j.jnoncrysol.2008.09.019

    Article  CAS  Google Scholar 

  18. Meng X, Li Y, Wang H, Yang Y, McLean A (2020) Effects of Na2O additions to copper slag on iron recovery and the generation of ceramics from the non-magnetic residue. J Hazard Mater 399:122845. https://doi.org/10.1016/j.jhazmat.2020.122845

    Article  CAS  Google Scholar 

  19. Yan Z, Deng Z, Zhu M (2021) Effect of CaCl2 addition on the viscosity of CaO–SiO2–FeOx steelmaking slag system. Metall Mater Trans B 52(4):2474–2483. https://doi.org/10.1007/s11663-021-02199-2

    Article  CAS  Google Scholar 

  20. Yan Z, Deng Z, Zhu M (2021) Effect of CaCl2 addition on phosphorus distribution between CaO–SiO2–FeOx–P2O5 slag and carbon-saturated iron at steelmaking temperature. Metall Mater Trans B 52(4):2806–2815. https://doi.org/10.1007/s11663-021-02236-0

    Article  CAS  Google Scholar 

  21. Ye L, Zhang J, Wang G, Wang C, Mao X, Ning X et al (2023) Feasibility analysis of plastic and biomass hydrochar for blast furnace injection. Energy 263:125903. https://doi.org/10.1016/j.energy.2022.125903

    Article  CAS  Google Scholar 

  22. Siwadamrongpong S, Koide M, Matusita K (2004) Prediction of chloride solubility in CaO–Al2O3–SiO2 glass systems. J Non-Cryst Solids 347(1–3):114–120. https://doi.org/10.1016/j.jnoncrysol.2004.07.063

    Article  CAS  Google Scholar 

  23. Angst U, Elsener B, Larsen CK, Vennesland Ø (2009) Critical chloride content in reinforced concrete—a review. Cem Concr Res 39(12):1122–1138. https://doi.org/10.1016/j.cemconres.2009.08.006

    Article  CAS  Google Scholar 

  24. Hou Y, Wang Y, Zhang GH, Chou KC (2022) Fabrication of magnetically controllable glass ceramics with completely dense microstructure by hot pressing. Int J Appl Ceram Technol 19:312–319. https://doi.org/10.1111/ijac.13921

    Article  CAS  Google Scholar 

  25. Zhang H, He Z, Zhang Y, Jing W, Wang B, Yang J, Lloyd I (2015) Lithium disilicate glass-ceramics by heat treatment of lithium metasilicate glass-ceramics obtained by hot pressing. J Am Ceram Soc 98(12):3659–3662. https://doi.org/10.1111/jace.13950

    Article  CAS  Google Scholar 

  26. Beall GH, Pinckney LR (1999) Nanophase glass-ceramics. J Am Ceram Soc 82(1):5–16. https://doi.org/10.1111/j.1151-2916.1999.tb01716.x

    Article  CAS  Google Scholar 

  27. Xue J, Zhong J, Mao Y, Xu C, Liu W, Huang Y (2020) Effect of CuO on crystallisation and properties of red R2O–CaO–MgO–Al2O3–SiO2 glass-ceramics from granite wastes. Ceram Int 46(14):23186–23193. https://doi.org/10.1016/j.ceramint.2020.06.099

    Article  CAS  Google Scholar 

  28. Zhang S, Zhang Y, Gao J, Qu Z, Zhang Z (2019) Effects of Cr2O3 and CaF2 on the structure, crystal growth behavior, and properties of augite-based glass ceramics. J Eur Ceram Soc 39(14):4283–4291. https://doi.org/10.1016/j.jeurceramsoc.2019.05.060

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Hua Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

The contributing editor for this article was M. Akbar Rhamdhani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HY., Li, Y., Jiao, SQ. et al. Effects of Na2O and CaCl2 on the Crystallization and Mechanical Properties of CaO-MgO-Al2O3-SiO2 Glass–Ceramics. J. Sustain. Metall. (2024). https://doi.org/10.1007/s40831-024-00819-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40831-024-00819-0

Keywords

Navigation