Skip to main content
Log in

Molecular Dynamics Analysis of the Microscopic Structural Behavior of K Ions in the CaO–Al2O3–K2O System Slag

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

In order to further elucidate the structural behavior of K+ ions in CaO–Al2O3–K2O system slag, molecular dynamics simulations were performed to analyze the influence of K ions on the microscopic structure of the slag under different K2O contents. The results indicate that Al–O forms a tetrahedral structure, while Ca–O, K–O, O–O, Al–K, and Al–Ca structures are less stable compared to Al–O. In this slag, K+ primarily functions as a charge compensator, forming K–O bond (K–Ob) structures and elongating the K–O bond length, whereas Ca2+ mainly leads to network disruption, resulting in Ca–O bond (Ca–Onb) structures with shortened Ca–O bond length. The charge compensating ability of K+ is superior to that of Ca2+. As the K/Ca ratio increases, [AlO4]5− tetrahedra achieve charge balance through K+ compensation, reducing the distortion of the Al–O structure. Furthermore, the substitution of K+ for Ca2+ narrows the distribution of bond angles, enhancing the stability of [AlO4]5− tetrahedral structures. It was also observed that K+ reduces the coordination of Al–O–Al by decreasing the proportion of tricoordinate oxygen in the shared tetrahedral structures, leading to the disappearance of minor peaks in Al–O–Al. As the K/Ca ratio increases, the proportion of non-bridging oxygen (Onb) and free oxygen (Of) decreases, promoting the formation of bridging oxygen (Al–Ob–Al) structures. Finally, the complex microstructure of the CaO–Al2O3–K2O melt was verified through Raman spectroscopy, confirming the accuracy of the molecular dynamics simulation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Grässel O, Krüger L, Frommeyer G, Meyer LW (2000) High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development-properties-application. Int J Plast 16:1391–1409. https://doi.org/10.1016/S0749-6419(00)00015-2

    Article  Google Scholar 

  2. Shu-cai Z (2013) Study of the clogging of the submersible nozzle in the continuous casting of stainless steel RE-253MA. Metallurgist 57:510–515. https://doi.org/10.1007/s11015-013-9761-6

    Article  Google Scholar 

  3. Wang W, Blazek K, Cramb A (2008) A study of the crystallization behavior of a new mold flux used in the casting of transformation-induced-plasticity steels. Metall Mater Trans B 39:66–74. https://doi.org/10.1007/s11663-007-9110-x

    Article  CAS  Google Scholar 

  4. Wang Q, Qiu S, Zhao P (2012) Kinetic Analysis of alumina change in mold slag for high aluminum steel during continuous casting. Metall Mater Trans B 43:424–430. https://doi.org/10.1007/s11663-011-9600-8

    Article  CAS  Google Scholar 

  5. Kim WH, Sohn I, Min DJ (2010) A study on the viscous behaviour with K2O additions in the CaO–SiO2–Al2O3–MgO–K2O quinary slag system. Steel Res Int 81:735–741. https://doi.org/10.1002/srin.201000067

    Article  CAS  Google Scholar 

  6. Ma C, Skoglund N, Carlborg M, Broström M (2020) Viscosity of molten CaO–K2O–SiO2 woody biomass ash slags in relation to structural characteristics from molecular dynamics simulation. Chem Eng Sci 215:115464. https://doi.org/10.1016/j.ces.2019.115464

    Article  CAS  Google Scholar 

  7. Yeo T, Jeon J-M, Hyun S-H et al (2022) Effects of Li2O on structure of CaO–SiO2–CaF2–Na2O glasses and origin of crystallization delay. J Mol Liq 347:117997. https://doi.org/10.1016/j.molliq.2021.117997

    Article  CAS  Google Scholar 

  8. Zhang X, Liu C, Jiang M (2021) Effect of Na ions on melt structure and viscosity of CaO–SiO2–Na2O by molecular dynamics simulations. ISIJ Int 61:1389–1395. https://doi.org/10.2355/isijinternational.ISIJINT-2020-635

    Article  CAS  Google Scholar 

  9. Zhang X, Liu C, Jiang M (2021) Molecular dynamics simulations of melt structure properties of CaO–Al2O3–Na2O slag. Metall Mater Trans B 52:2604–2611. https://doi.org/10.1007/s11663-021-02184-9

    Article  CAS  Google Scholar 

  10. Chen M, Zhao B (2016) Viscosity measurements of the SiO2–K2O–CaO system relevant to biomass slags. Fuel 180:638–644. https://doi.org/10.1016/j.fuel.2016.04.099

    Article  CAS  Google Scholar 

  11. Zhang G-H, Chou K-C (2012) Measuring and modeling viscosity of CaO–Al2O3–SiO2(–K2O) Melt. Metall Mater Trans B 43:841–848. https://doi.org/10.1007/s11663-012-9668-9

    Article  CAS  Google Scholar 

  12. Higo T, Sukenaga S, Kanehashi K et al (2014) Effect of potassium oxide addition on viscosity of calcium aluminosilicate melts at 1673–1873K. ISIJ Int 54:2039–2044. https://doi.org/10.2355/isijinternational.54.2039

    Article  CAS  Google Scholar 

  13. Min Y, Jiao S, Zhang R et al (2021) Surface tension and related ions behavior of silicate melts of the Na2O–K2O–SiO2–CaF2 system under ultrasonic irradiation. ISIJ Int 61:1022–1028. https://doi.org/10.2355/isijinternational.ISIJINT-2020-557

    Article  CAS  Google Scholar 

  14. Gao J, Wen G, Huang T et al (2016) Effects of the composition on the structure and viscosity of the CaO–SiO2-based mold flux. J Non-Cryst Solids 435:33–39. https://doi.org/10.1016/j.jnoncrysol.2016.01.001

    Article  CAS  Google Scholar 

  15. Zhou C, Li J, Wang S et al (2023) Development of molecular dynamics and research progress in the study of slag. Materials 16:5373. https://doi.org/10.3390/ma16155373

    Article  CAS  Google Scholar 

  16. Zhang R, Wang Z, Meng Y et al (2021) Quantitative insight into aluminum structures in CaO–Al2O3–SiO2 system via Raman and 27Al MAS-NMR spectroscopies. J Non-cryst Solids 573:121116. https://doi.org/10.1016/j.jnoncrysol.2021.121116

    Article  CAS  Google Scholar 

  17. Xu B, Cao Y, Wang Z et al (2022) Molecular dynamics study on the effect of SiO2/Al2O3 mass ratio on the structural properties and viscosity of molten fused red mud. Minerals 12:925. https://doi.org/10.3390/min12080925

    Article  CAS  Google Scholar 

  18. Wu T, Yang W, Zhang C et al (2021) Microstructural analysis by molecular dynamics simulation of aluminate ternary slag with alkaline oxide. J Non-Cryst Solids 570:121044. https://doi.org/10.1016/j.jnoncrysol.2021.121044

    Article  CAS  Google Scholar 

  19. Fan G, He S, Wu T, Wang Q (2015) Effect of fluorine on the structure of high Al2O3-Bearing system by molecular dynamics simulation. Metall Mater Trans B 46:2005–2013. https://doi.org/10.1007/s11663-015-0354-6

    Article  CAS  Google Scholar 

  20. Lei J, Yang W, Sheng G et al (2022) Effects of BaO content and CaO/Al2O3 Ratio on the properties and structure of aluminate slag. Metall Mater Trans B 53:2239–2247. https://doi.org/10.1007/s11663-022-02523-4

    Article  CAS  Google Scholar 

  21. Buckingham RA (1938) The classical equation of state of gaseous helium, neon and argon. Proc R Soc Lond A Math Phys Sci 168:264–283. https://doi.org/10.1098/rspa.1938.0173

    Article  CAS  Google Scholar 

  22. Lange RA (1997) A revised model for the density and thermal expansivity of K2O–Na2O–CaO–MgO–Al2O3–SiO2 liquids from 700 to 1900 K: extension to crustal magmatic temperatures. Contrib Mineral Petrol. https://doi.org/10.1007/s004100050345

    Article  Google Scholar 

  23. Lee SK, Stebbins JF (2003) The distribution of sodium ions in aluminosilicate glasses: a high-field Na-23 MAS and 3Q MAS NMR study. Geochim Cosmochim Acta 67:1699–1709. https://doi.org/10.1016/S0016-7037(03)00026-7

    Article  CAS  Google Scholar 

  24. Zekri M, Herrmann A, Erlebach A et al (2021) The structure of Gd3+-Doped Li2O and K2O containing aluminosilicate glasses from molecular dynamics simulations. Materials 14:3265. https://doi.org/10.3390/ma14123265

    Article  CAS  Google Scholar 

  25. Cormier L, Ghaleb D, Neuville DR et al (2003) Chemical dependence of network topology of calcium aluminosilicate glasses: a computer simulation study. J Non-Cryst Solids 332:255–270. https://doi.org/10.1016/j.jnoncrysol.2003.09.012

    Article  CAS  Google Scholar 

  26. Cormack AN, Du J (2001) Molecular dynamics simulations of soda-lime-silicate glasses. J Non-Cryst Solids 293–295:283–289. https://doi.org/10.1016/S0022-3093(01)00831-6

    Article  Google Scholar 

  27. Ispas S, Benoit M, Jund P, Jullien R (2002) Structural properties of glassy and liquid sodium tetrasilicate: comparison between ab initio and classical molecular dynamics simulations. J Non-Cryst Solids 307–310:946–955. https://doi.org/10.1016/S0022-3093(02)01549-1

    Article  Google Scholar 

  28. Uchino T, Yoko T (1998) Structure and vibrational properties of sodium disilicate glass from ab initio molecular orbital calculations. J Phys Chem B 102:8372–8378. https://doi.org/10.1021/jp981564g

    Article  CAS  Google Scholar 

  29. Du Y, Yuan Y, Li L et al (2021) Insights into structure and properties of P2O5-based binary systems through molecular dynamics simulations. J Mol Liq 339:116818. https://doi.org/10.1016/j.molliq.2021.116818

    Article  CAS  Google Scholar 

  30. Allwardt JR (2005) Letter. The effect of Fictive temperature on Al coordination in high-pressure (10 GPa) sodium aluminosilicate glasses. Am Mineral 90:1453–1457. https://doi.org/10.2138/am.2005.1736

    Article  CAS  Google Scholar 

  31. Hannon AC, Parker JM (2000) The structure of aluminate glasses by neutron diffraction. J Non-Cryst Solids 274:102–109. https://doi.org/10.1016/S0022-3093(00)00208-8

    Article  CAS  Google Scholar 

  32. Ghardi EM, Jabraoui H, Badawi M et al (2020) Structure-elasticity relationship of potassium silicate glasses from brillouin light scattering spectroscopy and molecular dynamics simulations. J Phys Chem B 124:9216–9223. https://doi.org/10.1021/acs.jpcb.0c05555

    Article  CAS  Google Scholar 

  33. Zheng K, Zhang Z, Yang F, Sridhar S (2012) Molecular dynamics study of the structural properties of calcium aluminosilicate slags with varying Al2O3/SiO2 ratios. ISIJ Int 52:342–349. https://doi.org/10.2355/isijinternational.52.342

    Article  CAS  Google Scholar 

  34. Wan X, Shi C, Huang Y et al (2023) Effect of SiO2 and BaO/CaO mass ratio on structure and viscosity of B2O3-containing CaF2–CaO–Al2O3-based slag for electroslag remelting of rotor steel. Metall Mater Trans B 54:465–479. https://doi.org/10.1007/s11663-022-02706-z

    Article  CAS  Google Scholar 

  35. Virgo D, Mysen BO, Kushiro I (1980) Anionic constitution of 1-atmosphere silicate melts: implications for the structure of igneous melts. Science 208:1371–1373. https://doi.org/10.1126/science.208.4450.1371

    Article  CAS  Google Scholar 

  36. Kim TS, Park JH (2014) Structure-viscosity relationship of low-silica calcium aluminosilicate melts. ISIJ Int 54:2031–2038. https://doi.org/10.2355/isijinternational.54.2031

    Article  CAS  Google Scholar 

  37. Wang Y, Zhang R, Zhao X, Min Y, Liu C (2020) Structural transformation of molten CaO–SiO2–Al2O3–FexO slags during secondary refining of steels. ISIJ Int 60(220–225):39

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant No. 51974075). The authors gratefully acknowledge the support.

Funding

The National Natural Science Foundation of China, 51974075, Yi Min.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Min.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

The contributing editor for this article was Adam Clayton Powell.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, S., Min, Y., Guo, P. et al. Molecular Dynamics Analysis of the Microscopic Structural Behavior of K Ions in the CaO–Al2O3–K2O System Slag. J. Sustain. Metall. (2024). https://doi.org/10.1007/s40831-024-00813-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40831-024-00813-6

Keywords

Navigation