Skip to main content
Log in

Mechanism and Kinetic Analysis of Ultrasonic Cavitation-Assisted Ozone Dissolution of Copper

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

A new method has been proposed to address the slow dissolution rate of copper, which utilizes the synergy of ultrasonic waves and ozone (O3) to leach metallic copper. The study investigated the impact of ultrasound power, O3 flow rate, initial copper ion (Cu2+) concentration, sulfuric acid (H2SO4) concentration, and reaction temperature on copper dissolution rate. Optimal reaction condition was determined and under such condition, copper dissolution rate could reach 23.61 g L−1 h−1, which is 1.46 times higher than that without ultrasonic (16.07 g L−1 h−1). Analysis of the experimental data revealed that the dissolution process, with and without ultrasound, both follow the unreacted nucleus model, which are controlled by chemical reactions. Ultrasound treatment reduced the apparent activation energy of copper dissolution from 46.79 to 28.83 kJ mol−1. This reduction indicates that ultrasound can lower the potential barrier of copper dissolution and accelerate the reaction through strong mechanical and cavitation effects. The ultrasonic ozone-enhanced copper dissolution technology has significant implications for optimizing copper leaching processes and comprehensive recovery of copper.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Chen LJ (2016) Nanoscale copper and copper compounds for advanced device applications. Metall Mater Trans A 47(12):5845–5851

    Article  CAS  Google Scholar 

  2. Luo JL, Mo DC, Wang YQ, Lyu SS (2021) Biomimetic copper forest wick enables high thermal conductivity ultrathin heat pipe. ACS Nano 15(4):6614–6621

    Article  CAS  PubMed  Google Scholar 

  3. Oliveri V (2020) Biomedical applications of copper ionophores. Coord Chem Rev 422:213474

    Article  CAS  Google Scholar 

  4. Ma XL, Li YZ, Yao ED, Wang WJ, Xie XS, Qi SL, Cheng X, Li YF, Huang GJ, Yin XQ (2019) Microstructure and properties of electrolytic copper foil with different thicknesses. Rare Met Mater Eng 48(9):2905–2909

    CAS  Google Scholar 

  5. Huixian N (2005) Application and development of copper foil in li-ion battery production. Chin J Rare Met 29(6):898–902

    Google Scholar 

  6. Pinga Z, Zeyuna F, Jie L, Qiang L, Guangren Q, Ming Z (2009) Enhancement of leaching copper by electro-oxidation from metal powders of waste printed circuit board. J Hazard Mater 166(2–3):746–750

    Article  Google Scholar 

  7. Herreros O, Quiroz R, Restovic A, Viñals J (2005) Dissolution kinetics of metallic copper with CuSO4–NaCl–HCl. Hydrometallurgy 77(3–4):183–190

    Article  CAS  Google Scholar 

  8. Kim E-Y, Kim M-S, Lee J-C, Yoo K, Jeong J (2010) Leaching behavior of copper using electro-generated chlorine in hydrochloric acid solution. Hydrometallurgy 100(3–4):95–102

    Article  CAS  Google Scholar 

  9. Wang ZK, Che JT, Ye CL (2010) Application of ferric chloride both as oxidant and complexant to enhance the dissolution of metallic copper. Hydrometallurgy 105(1–2):69–74

    Article  CAS  Google Scholar 

  10. Jung M, Yoo K, Alorro RD (2017) Dismantling of electric and electronic components from waste printed circuit boards by hydrochloric acid leaching with stannic ions. Mater Trans 58(7):1076–1080

    Article  CAS  Google Scholar 

  11. Moon G, Yoo K (2017) Separation of Cu, Sn, Pb from photovoltaic ribbon by hydrochloric acid leaching with stannic ion followed by solvent extraction. Hydrometallurgy 171:123–127

    Article  CAS  Google Scholar 

  12. Marafi M, Stanislaus A (2011) Waste catalyst utilization: extraction of valuable metals from spent hydroprocessing catalysts by ultrasonic-assisted leaching with acids. Ind Eng Chem Res 50(16):9495–9501

    Article  CAS  Google Scholar 

  13. Postema M, Schmitz G (2007) Ultrasonic bubbles in medicine: Influence of the shell. Ultrason Sonochem 14(4):438–444

    Article  CAS  PubMed  Google Scholar 

  14. Li J, Zhang L, Peng J, Hu J, Yang L, Ma A et al (2016) Removal of uranium from uranium plant wastewater using zero-valent iron in an ultrasonic field. Nucl Eng Technol 48(3):744–750

    Article  Google Scholar 

  15. Mirzadeh E, Akhbari K, Phuruangrat A, Costantino F (2017) A survey on the effects of ultrasonic irradiation, reaction time and concentration of initial reagents on formation of kinetically or thermodynamically stable copper(I) metal-organic nanomaterials. Ultrason Sonochem 35(Pt A):382–388

    Article  CAS  PubMed  Google Scholar 

  16. Villeneuve L, Alberti L, Steghens JP, Lancelin JM, Mestas JL (2009) Assay of hydroxyl radicals generated by focused ultrasound. Ultrason Sonochem 16(3):339–344

    Article  CAS  PubMed  Google Scholar 

  17. Amaniampong PN, Karam A, Trinh QT, Xu K, Hirao H, Jérôme F, Chatel G (2017) Selective and catalyst-free oxidation of D-glucose to D-glucuronic acid induced by high-frequency ultrasound. Sci Rep 7(1):40650

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  18. Liu HL, Wang SX, Fu LK, Zhang GW, Zuo YG, Zhang LB (2022) Mechanism and kinetics analysis of valuable metals leaching from copper-cadmium slag assisted by ultrasound cavitation. J Clean Prod 379(2):134775

    Article  CAS  Google Scholar 

  19. Liu X, Wang SX, Peng ZW, Zhang GW, Gui QH, Zhang LB (2023) Removal of toxic cadmium (II) from zinc sulfate solution with zinc powder enhanced by ultrasound: Kinetics and mechanism. Sep Purif Technol 308:122995

    Article  CAS  Google Scholar 

  20. Havlik T, Skrobian M (1990) Acid leaching of chalcopyrite in the presence of ozone. Can Metall Q 29(2):133–139

    Article  CAS  Google Scholar 

  21. Qing CL, Deng XL, Fang JQ (2009) Pre-oxidation of high-sulfur and high-arsenic refractory gold concentrate by ozone and ferric ions in acidic media. Hydrometallurgy 97(1–2):61–66

    Google Scholar 

  22. Viñals J, Juan E, Roca A, Cruells M, Casado J (2005) Leaching of metallic silver with aqueous ozone. Hydrometallurgy 76(3–4):225–232

    Article  Google Scholar 

  23. Viñals J, Juan E, Ruiz M, Ferrando E, Cruells M, Roca A, Casdao J (2006) Leaching of gold and palladium with aqueous ozone in dilute chloride media. Hydrometallurgy 81(2):142–151

    Article  Google Scholar 

  24. Yang J, Chen LZ, Wu DD, Cao J, Guo JF (2023) Leaching of cuprite with ozone as an oxidant in sulfuric acid solution and its oxidation leaching mechanism. Arab J Chem 16(10):105159

    Article  CAS  Google Scholar 

  25. Rossi G, Mainardis M, Aneggi E, Weavers LK, Goi D (2021) Combined ultrasound-ozone treatment for reutilization of primary effluent-a preliminary study. Environ Sci Pollut Res 28(1):700–710

    Article  CAS  Google Scholar 

  26. Weavers LK, Hoffmann MR (1999) Sonolytic decomposition of ozone in aqueous solution: mass transfer effects. Environ Sci Technol 33(2):372–372

    Article  ADS  CAS  Google Scholar 

  27. Wang T, Le T, Hu J, Ravindra AV, Xv HR, Zhang LB et al (2022) Ultrasonic-assisted ozone degradation of organic pollutants in industrial sulfuric acid. Ultrason Sonochem 86:106043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gui QH, Hu YT, Wang SX, Zhang LB (2022) Mechanism of synergistic pretreatment with ultrasound and ozone to improve gold and silver leaching percentage. Appl Surf Sci 576(Pt A):151726

    Article  CAS  Google Scholar 

  29. Liu J, Wang SX, Liu CH, Zhang LB, Kong DS (2021) Mechanism and kinetics of synergistic decopperization from copper anode slime by ultrasound and ozone. J Clean Prod 322:129058

    Article  CAS  Google Scholar 

  30. Merouani S, Hamdaoui O, Saoudi F, Chiha M (2010) Influence of experimental parameters on sonochemistry dosimetries: KI oxidation, Fricke reaction and H2O2 production. J Hazard Mater 178(1–3):1007–1014

    Article  CAS  PubMed  Google Scholar 

  31. Fu LK, Zhang LB, Wang SX, Cui W, Peng JH (2017) Synergistic extraction of gold from the refractory gold ore via ultrasound and chlorination-oxidation. Ultrason Sonochem 37:471–477

    Article  CAS  PubMed  Google Scholar 

  32. Zhang L, Guo W, Peng J, Li J, Lin G, Yu X (2016) Comparison of ultrasonic-assisted and regular leaching of germanium from by-product of zinc metallurgy. Ultrason Sonochem 31:143–149

    Article  PubMed  Google Scholar 

  33. Khaleghi A, Ghader S, Afzali D (2014) Ag recovery from copper anode slime by acid leaching at atmospheric pressure to synthesize silver nanoparticles. Int J Min Sci Technol 24(2):251–257

    Article  CAS  Google Scholar 

  34. Vecitis CD, Lesko T, Colussi AJ, Hoffmann MR (2010) Sonolytic decomposition of aqueous bioxalate in the presence of ozone. J Phys Chem A 114:4968–4980

    Article  CAS  PubMed  Google Scholar 

  35. Carrillo-Pedroza FR, Sánchez-Castillo MA, Soria-Aguilar MJ, Martínez-Luévanos A, Gutiérrez EC (2013) Evaluation of acid leaching of low grade chalcopyrite using ozone by statistical analysis. Can Metall Q 49(3):219–226

    Article  Google Scholar 

  36. Pedroza FRC, Aguilar MDJS, Treviño TP, Luévanos AM, Castillo MS (2012) Treatment of sulfide minerals by oxidative leaching with ozone. Miner Process Extr Metall Rev 33(4):269–279

    Article  CAS  Google Scholar 

  37. Wang M, Zhang Y, Muhammed M (1997) Critical evaluation of thermodynamics of complex formation of metal ions in aqueous solutions III. The system Cu(I, II)-Cl–e at 298.15 K. Hydrometallurgy 45:53–72

    Article  CAS  Google Scholar 

  38. Rodríguez-Rodríguez C, Nava-Alonso F, Uribe-Salas A (2014) Silver leaching from pyrargyrite oxidation by ozone in acid media. Hydrometallurgy 149:168–176

    Article  Google Scholar 

  39. Ashraf M, Zafar ZI, Ansari TM (2005) Selective leaching kinetics and upgrading of low-grade calcareous phosphate rock in succinic acid. Hydrometallurgy 80(4):286–292

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Yunnan Fundamental Research Projects (Grant 202101BE070001-021) and Yunnan Fundamental Research Projects (Grant No. 202301AT070385).

Author information

Authors and Affiliations

Authors

Contributions

GS: Conceptualization, Formal analysis, Data curation, Investigation, Writing-Original Draft. MJ: Conceptualization, Formal analysis, Investigation, Data curation, Formal analysis, Writing-review. SW: Investigation, Resources. GZ: Investigation, Resources. ZH: Investigation. LZ: Supervision, Writing-review & editing.

Corresponding authors

Correspondence to Gengwei Zhang or Libo Zhang.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

The contributing editor for this article was Atsushi Shibayama.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, G., Jiang, M., Wang, S. et al. Mechanism and Kinetic Analysis of Ultrasonic Cavitation-Assisted Ozone Dissolution of Copper. J. Sustain. Metall. 10, 170–183 (2024). https://doi.org/10.1007/s40831-024-00784-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-024-00784-8

Keywords

Navigation