Skip to main content
Log in

The Effect of Removing Hard-to-Grind Minerals from Steel Slag on Efficient Grinding and Hydration Activity

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Grinding is usually used to increase the specific surface area of steel slag to improve its activity. However, due to the large amount of hard-to-grind minerals in steel slag, a large amount of energy is wasted in the grinding process. Therefore, the current investigation aims to remove the hard-to-grind minerals in steel slag as much as possible to explore the influence of hard-to-grind minerals removal on efficient grinding and hydration activity. It is found that the removal rate of hard-to-grind minerals in steel slag is the highest when steel slag enters magnetic separation particle size of 1 mm and magnetic field strength of 1400 Gs. Compared with untreated steel slag, the grinding efficiency of treated steel slag can be increased by 22%, and the hydration activity is not affected. Therefore, the treated steel slag improves the efficiency in the grinding process, while the hydration activity is not affected.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Liu J-X, Jia R-Q, Jia R-Q (2017) A study of factors that influence the hydration activity of mono-component CaO and bi-component CaO/Ca2Fe2O5 systems. Cem Concr Res 91(1):123. https://doi.org/10.1016/j.cemconres.2016.11.011

    Article  CAS  Google Scholar 

  2. Pang B, Zhou Z, Hou P et al (2016) Autogenous and engineered healing mechanisms of carbonated steel slag aggregate in concrete. Constr Build Mater 107(1):191. https://doi.org/10.1016/j.conbuildmat.2015.12.191

    Article  CAS  Google Scholar 

  3. World Steel Association (2022) Steel statistical yearbook. World Steel Association, Brussels

    Google Scholar 

  4. Liu C, Wang H, Xing H-W et al (2021) High-temperature modification and air-quenching granulation of steel slag. J Iron Steel Res Int 29(5):783. https://doi.org/10.1007/s42243-021-00641-y

    Article  CAS  Google Scholar 

  5. Yi H, Cheng H-G, Wang J-S et al (2012) An overview of utilization of steel slag. Procedia Environ Sci 16(1):791–801. https://doi.org/10.1016/j.proenv.2012.10.108

    Article  CAS  Google Scholar 

  6. Fisher LV, Barron AR (2019) The recycling and reuse of steelmaking slags — a review. Resour Conserv Recycl 146(1):244. https://doi.org/10.1016/j.resconrec.2019.03.010

    Article  Google Scholar 

  7. Guo J, Bao Y-P, Wang M (2018) Steel slag in China: treatment, recycling, and management. Waste Manage 78(1):318. https://doi.org/10.1016/j.wasman.2018.04.045

    Article  Google Scholar 

  8. Gutierrez J, Hong C-O, Lee BH et al (2010) Effect of steel-making slag as a soil amendment on arsenic uptake by radish (Raphanus sativa L) in an upland soil. Biol Fertil Soils 46(6):617. https://doi.org/10.1007/s00374-010-0470-z

    Article  Google Scholar 

  9. Li Y, Liu Y, Gong X et al (2016) Environmental impact analysis of blast furnace slag applied to ordinary portland cement production. J Cleaner Prod 120(1):221. https://doi.org/10.1016/j.jclepro.2015.12.071

    Article  CAS  Google Scholar 

  10. Netinger I, Varevac D, Bjegovic D et al (2013) Effect of high temperature on properties of steel slag aggregate concrete. Fire Saf J 59(1):1. https://doi.org/10.1016/j.firesaf.2013.03.008

    Article  CAS  Google Scholar 

  11. Ogawa Y, Yano M, Kitamura S (2001) Development of the continuous dephosphorization and decarburization process using BOF. Steel Res Int 87(1):21. https://doi.org/10.2355/tetsutohagane1955.87.1_21

    Article  CAS  Google Scholar 

  12. Han F, Yun S, Zhang C et al (2019) Steel slag as accelerant in anaerobic digestion for nonhazardous treatment and digestate fertilizer utilization. Bioresour Technol 282(1):331. https://doi.org/10.1016/j.biortech.2019.03.029

    Article  CAS  Google Scholar 

  13. Poh HY, Ghataora GS, Ghazireh N (2006) Soil stabilization using basic oxygen steel slag fines. J Mater Civ Eng 18(2):229. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:2(229)

    Article  CAS  Google Scholar 

  14. Fujisawa N, Fukushima M, Yamamoto M et al (2012) Structural alterations of humic acid fractions in a steel slag-compost fertilizer during fertilization. Analysis by pyrolysis/methylation-gas chromatography/mass spectrometry. J Anal Appl Pyrolysis 95(1):126. https://doi.org/10.1016/j.jaap.2012.01.017

    Article  CAS  Google Scholar 

  15. Kennedy AM, Arias-Paic M (2020) Application of powdered steel slag for more sustainable removal of metals from impaired waters. J Water Process Eng 38(1):101599. https://doi.org/10.1016/j.jwpe.2020.101599

    Article  Google Scholar 

  16. Cheng M, Zeng G, Huang D et al (2018) Efficient degradation of sulfamethazine in simulated and real wastewater at slightly basic pH values using Co-SAM-SCS /H2O2 fenton-like system. Water Res 138(1):7. https://doi.org/10.1016/j.watres.2018.03.022

    Article  CAS  Google Scholar 

  17. Wei X-L, Ni W, Zhang S-Q et al (2022) Influence of the key factors on the performance of steel slag-desulphurisation gypsum-based hydration-carbonation materials. J Build Eng 45(1):103591. https://doi.org/10.1016/j.jobe.2021.1035918

    Article  Google Scholar 

  18. Beshr H, Almusallam AA, Maslehuddin M (2003) Effect of coarse aggregate quality on the mechanical properties of high strength concrete. Constr Build Mater 17(2):97. https://doi.org/10.1016/S0950-0618(02)00097-1

    Article  Google Scholar 

  19. Xue Y-J, Wu S-P, Hou H-B et al (2006) Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture. J Hazard Mater 138(2):261. https://doi.org/10.1016/j.jhazmat.2006.02.073

    Article  CAS  Google Scholar 

  20. Pasetto M, Baliello A, Giacomello G et al (2017) Sustainable solutions for road pavements: a multi-scale characterization of warm mix asphalts containing steel slags. J Clean Prod 166(1):835. https://doi.org/10.1016/j.jclepro.2017.07.212

    Article  Google Scholar 

  21. Shen W, Zhou M, Ma W et al (2009) Investigation on the application of steel slag-fly ash-phosphogypsum solidified material as road base material. J Hazard Mater 164(1):99. https://doi.org/10.1016/j.jhazmat.2008.07.125

    Article  CAS  Google Scholar 

  22. Qasrawi H, Shalabi F, Asi I et al (2009) Use of low CaO unprocessed steel slag in concrete as fine aggregate. Constr Build Mater 23(2):1118. https://doi.org/10.1016/j.conbuildmat.2008.06.003

    Article  Google Scholar 

  23. Wu X-Q, Zhou H, Hou X-K et al (1999) Study on steel slag and fly ash composite portland cement. Cem Concr Res 29(7):1103. https://doi.org/10.1016/S0008-8846(98)00244-0

    Article  CAS  Google Scholar 

  24. Tsai C, Huang R, Lin W et al (2014) Mechanical and cementitious characteristics of ground granulated blast furnace slag and basic oxygen furnace slag blended mortar. Mater Des 60(1):267. https://doi.org/10.1016/j.matdes.2014.04.002

    Article  CAS  Google Scholar 

  25. Li Z, Zhao S, Zhao X et al (2013) Cementitious property modification of basic oxygen furnace steel slag. Constr Build Mater 48(1):575. https://doi.org/10.1016/j.conbuildmat.2013.07.068

    Article  Google Scholar 

  26. Yang L-Y, Wei T-C, Li S-W et al (2021) Immobilization persistence of Cu, Cr, Pb, Zn ions by the addition of steel slag in acidic contaminated mine soil. J Hazard Mater 412(1):125176. https://doi.org/10.1016/j.jhazmat.2021.125176

    Article  CAS  Google Scholar 

  27. Tsakiridis PE, Papadimitriou GD, Tsivilis S et al (2008) Utilization of steel slag for portland cement clinker production. J Hazard Mater 152(2):805. https://doi.org/10.1016/j.jhazmat.2007.07.093

    Article  CAS  Google Scholar 

  28. Muhmood L, Vitta S, Venkateswaran D (2009) Cementitious and pozzolanic behavior of electric arc furnace steel slags. Cem Concr Res 39(2):102. https://doi.org/10.1016/j.cemconres.2008.11.002

    Article  CAS  Google Scholar 

  29. Hu S-G, Lu L-N, Ding Q-J (2006) Effect of fine steel slag powder on the early hydration process of portland cement. J Wuhan Univ Technol 21(1):147. https://doi.org/10.1007/BF02861494

    Article  CAS  Google Scholar 

  30. Sandile N, Brian L (2018) Addition of pebbles to a ball-mill to improve grinding efficiency part-2. Miner Eng 128:115–122. https://doi.org/10.1016/j.mineng.2018.08.024

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Funded by National Key Research and Development Project of China by Grant Number of 2018YFC1900604, Funded by Open Foundation of State Key Laboratory of Mineral Processing of China by Grant Number of BGRIMM-KJSKL-2020-11, and the fundamental research funds for the central universities with the Grant Number FRF-IP-20-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wentao Hu.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript, and manuscript is approved by all authors for publication. This manuscript is a previously unpublished work and no other submission or publication will be made. All of the authors participated in the study and they have agreed to the content of the manuscript.

Additional information

The contributing editor for this article was João António Labrincha Batista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Hu, W., Ni, W. et al. The Effect of Removing Hard-to-Grind Minerals from Steel Slag on Efficient Grinding and Hydration Activity. J. Sustain. Metall. 9, 1315–1328 (2023). https://doi.org/10.1007/s40831-023-00728-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-023-00728-8

Keywords

Navigation