Skip to main content

Advertisement

Log in

Challenges and Opportunities of Agricultural Biomass as a Replacement for PCI Coal in the Ironmaking Blast Furnace: A Review

  • Review Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Steel production is regarded as one of the primary greenhouse gas emission sources where fossil carbon-bearing fuels are used as chemical reducing agents and a source of energy. Due to the dual role of carbon (iron ore reduction and heating) in the blast furnace ironmaking process, biocarbon-based renewable energy sources may serve as a prospective low-emission alternative to fossil fuel carbon. In recent times, there has been a rapid rise in global concerns regarding climate change issues attributed to excessive CO2 emission in the atmosphere. As a result, a significant emphasis has been imposed on the iron and steel industry to reduce their high CO2 emission levels. Until now, woody biomass has mainly been considered for producing biocarbon for the blast furnace ironmaking process. Due to the presence of higher alkali and alkaline earth metal compounds, as well as phosphorus compounds, biocarbon from agricultural biomass has not been regarded as a potential replacement for metallurgical coal in the ironmaking process and therefore has not been deeply explored. In this review, various existing and promising routes for biomass conversion into biocarbon and their limitations are described. Finally, a hybrid hydrothermal carbonization and slow pyrolysis process is proposed to convert agricultural biomass into biocarbon, which has the potential to replace PCI coal in the blast furnace and other fossil fuels in iron and steelmaking processes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. World Steel Association (2020) Steel statistical yearbook 2020. World Steel Association, Brussels

    Google Scholar 

  2. Ng KW, Giroux L, MacPhee T, Todoschuk T, (2010) Direct injection of biofuel in blast furnace ironmaking. In AISTech—iron and steel technology conference, pp 643–651

  3. Feliciano-Bruzual C (2014) Charcoal injection in blast furnaces (Bio-PCI): CO2 reduction potential and economic prospects. J Mater Res Technol 3(3):233–243. https://doi.org/10.1016/j.jmrt.2014.06.001

    Article  CAS  Google Scholar 

  4. Ng KW, Giroux L, Todoschuk T (2018) Value-in-use of biocarbon fuel for direct injection in blast furnace ironmaking. Ironmak Steelmak 45(5):406–411. https://doi.org/10.1080/03019233.2018.1457837

    Article  CAS  Google Scholar 

  5. Sriram N, Shahidehpour M (2005) Renewable biomass energy. IEEE Power Eng Soc General Meet 2005:1910–1915. https://doi.org/10.1109/PES.2005.1489459

    Article  Google Scholar 

  6. Suopajärvi H et al (2018) Use of biomass in integrated steelmaking—status quo, future needs and comparison to other low-CO2 steel production technologies. Appl Energy 213:384–407. https://doi.org/10.1016/j.apenergy.2018.01.060

    Article  CAS  Google Scholar 

  7. Babich A, Senk D, Gudenau HW, Mavrommatis KT (2008) Handbook of ironmaking. Wissenschaftsverlag Mainz, Mainz

    Google Scholar 

  8. Suopajärvi H, Pongrácz E, Fabritius T (2013) The potential of using biomass-based reducing agents in the blast furnace: a review of thermochemical conversion technologies and assessments related to sustainability. Renew Sustain Energy Rev 25:511–528. https://doi.org/10.1016/j.rser.2013.05.005

    Article  CAS  Google Scholar 

  9. Leles PHM, Viana ST, Assis P, Do Cruzeiro M (2012) Characterization of mixtures of sugarcane bagasse and charcoal for injection through tuyeres of blast furnaces. AISTech—iron steel technology conference proceedings, pp 277–292

  10. Wang C et al (2015) Biomass as blast furnace injectant—considering availability, pretreatment and deployment in the Swedish steel industry. Energy Convers Manag 102:217–226. https://doi.org/10.1016/j.enconman.2015.04.013

    Article  CAS  Google Scholar 

  11. Chen W-H, Cheng W-Y, Lu K-M, Huang Y-P (2011) An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction. Appl Energy 88(11):3636–3644. https://doi.org/10.1016/j.apenergy.2011.03.040

    Article  CAS  Google Scholar 

  12. Chen WH, Wu JS (2009) An evaluation on rice husks and pulverized coal blends using a drop tube furnace and a thermogravimetric analyzer for application to a blast furnace. Energy 34(10):1458–1466. https://doi.org/10.1016/j.energy.2009.06.033

    Article  CAS  Google Scholar 

  13. Mathieson JG, Somerville MA, Deev A, Jahanshahi S (2015) Utilization of biomass as an alternative fuel in ironmaking. Iron ore: mineralogy, processing and environmental sustainability. Elsevier Inc., Amsterdam, pp 581–613

    Chapter  Google Scholar 

  14. Mathieson JG, Rogers H, Somerville M, Ridgeway P, Jahanshahi S (2011) Use of biomass in the iron and steel industry–an Australian perspective. EECR-METEC InSteelCon 1:1

    Google Scholar 

  15. Mandova H, Gale WF, Williams A, Heyes AL, Hodgson P, Miah KH (2018) Global assessment of biomass suitability for ironmaking—opportunities for co-location of sustainable biomass, iron and steel production and supportive policies. Sustain Energy Technol Assess 27:23–39. https://doi.org/10.1016/j.seta.2018.03.001

    Article  Google Scholar 

  16. Ahmed H (2018) New trends in the application of carbon-bearing materials in blast furnace iron-making. Minerals 8(12):1–20. https://doi.org/10.3390/min8120561

    Article  CAS  Google Scholar 

  17. Mousa E, Wang C, Riesbeck J, Larsson M (2016) Biomass applications in iron and steel industry: an overview of challenges and opportunities. Renew Sustain Energy Rev 65:1247–1266. https://doi.org/10.1016/j.rser.2016.07.061

    Article  Google Scholar 

  18. Ng KG, Giroux L, MacPhee T, Todoschuk T (2011) Biofuel ironmaking strategy from a Canadian perspective: short-term potential and long-term outlook. Proceedings of the 1st international conference on energy efficiency and CO2 reduction in the steel industry, Session, vol. 9

  19. Suopajärvi H, Kemppainen A, Haapakangas J, Fabritius T (2017) Extensive review of the opportunities to use biomass-based fuels in iron and steelmaking processes. J Clean Prod 148:709–734. https://doi.org/10.1016/j.jclepro.2017.02.029

    Article  CAS  Google Scholar 

  20. Mathieson JG, Rogers H, Somerville MA, Jahanshahi S (2012) Reducing net CO2 emissions using charcoal as a blast furnace tuyere injectant. ISIJ Int 52(8):1489–1496. https://doi.org/10.2355/isijinternational.52.1489

    Article  CAS  Google Scholar 

  21. Norgate T, Haque N, Somerville M, Jahanshahi S (2012) Biomass as a source of renewable carbon for iron and steelmaking. ISIJ Int 52(8):1472–1481

    Article  CAS  Google Scholar 

  22. Thrän D et al (2016) Moving torrefaction towards market introduction—technical improvements and economic-environmental assessment along the overall torrefaction supply chain through the SECTOR project. Biomass Bioenerg 89:184–200. https://doi.org/10.1016/j.biombioe.2016.03.004

    Article  CAS  Google Scholar 

  23. Birat J (2010) Global technology roadmap for CCS in industry steel sectoral report steel sectoral report contribution to the UNIDO roadmap on CCS 1-fifth draft

  24. Pardo N, Moya JA (2013) Prospective scenarios on energy efficiency and CO2 emissions in the European iron & steel industry. Energy 54:113–128. https://doi.org/10.1016/j.energy.2013.03.015

    Article  CAS  Google Scholar 

  25. Gupta RC (2003) Woodchar as a sustainable reductant for ironmaking in the 21st century. Miner Process Extr Metall Rev 24(3–4):203–231. https://doi.org/10.1080/714856822

    Article  CAS  Google Scholar 

  26. Schwarz M, Babich A, Senk D, Sadiku V, Gbadebo P (2016) Usage of biomass in Cokemaking. In Proceedings of the 5th international conference on process development in iron and steelmaking (SCANMET V), Luleå, Sweden, pp. 12–15

  27. Zhu X et al (2016) Novel carbon-rich additives preparation by degradative solvent extraction of biomass wastes for coke-making. Bioresour Technol 207:85–91

    Article  CAS  Google Scholar 

  28. Bazaluk O et al (2022) Metallurgical coke production with biomass additives: study of biocoke properties for blast furnace and submerged arc furnace purposes. Materials (Basel) 15(3):1147

    Article  CAS  Google Scholar 

  29. Montiano MG, Díaz-Faes E, Barriocanal C, Alvarez R (2014) Influence of biomass on metallurgical coke quality. Fuel 116:175–182. https://doi.org/10.1016/j.fuel.2013.07.070

    Article  CAS  Google Scholar 

  30. Xing X et al (2017) Effect of charcoal addition on the properties of a coke subjected to simulated blast furnace conditions. Fuel Process Technol 157:42–51

    Article  CAS  Google Scholar 

  31. Andahazy D, Slaby S, Loffler G, Winter F, Feilmayr C, Burgler T (2006) Governing processes of gas and oil injection into the blast furnace. ISIJ Int 46(4):496–502. https://doi.org/10.2355/isijinternational.46.496

    Article  CAS  Google Scholar 

  32. Slaby S, Andahazy D, Winter F, Feilmayr C, Burgler T (2006) Reducing ability of CO and H2 of gases formed in the lower part of the blast furnace by gas and oil injection. ISIJ Int 46(7):1006–1013. https://doi.org/10.2355/isijinternational.46.1006

    Article  CAS  Google Scholar 

  33. Geerdes M, Chaigneau R, Kurunov I (2015) Modern blast furnace ironmaking: an introduction (2015). IOS Press, Amsterdam

    Google Scholar 

  34. Demirbas A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42(11):1357–1378

    Article  CAS  Google Scholar 

  35. Özbay N, Pütün AE, Uzun BB, Pütün E (2001) Biocrude from biomass: pyrolysis of cottonseed cake. Renew Energy 24(3–4):615–625. https://doi.org/10.1016/S0960-1481(01)00048-9

    Article  Google Scholar 

  36. Duku MH, Gu S, Ben Hagan E (2011) A comprehensive review of biomass resources and biofuels potential in Ghana. Renew Sustain Energy Rev 15(1):404–415. https://doi.org/10.1016/j.rser.2010.09.033

    Article  Google Scholar 

  37. Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Morgan TJ (2012) An overview of the organic and inorganic phase composition of biomass. Fuel. https://doi.org/10.1016/j.fuel.2011.09.030

    Article  Google Scholar 

  38. Demirba A (1997) Calculation of higher heating values. Fuel 76(5):431–434

    Article  Google Scholar 

  39. González JF, Román S, Encinar JM, Martínez G (2009) Pyrolysis of various biomass residues and char utilization for the production of activated carbons. J Anal Appl Pyrolysis 85(1–2):134–141. https://doi.org/10.1016/j.jaap.2008.11.035

    Article  CAS  Google Scholar 

  40. Ando H, Sakaki T, Kokusho T, Shibata M, Uemura Y, Hatate Y (2000) Decomposition behavior of plant biomass in hot-compressed water. Ind Eng Chem Res 39(10):3688–3693. https://doi.org/10.1021/ie0000257

    Article  CAS  Google Scholar 

  41. Demirbas A (2004) Combustion characteristics of different biomass fuels. Prog Energy Combust Sci 30(2):219–230. https://doi.org/10.1016/j.pecs.2003.10.004

    Article  CAS  Google Scholar 

  42. Wu H, Fu Q, Giles R, Bartle J (2008) Production of mallee biomass in Western Australia: energy balance analysis. Energy Fuels 22(1):190–198. https://doi.org/10.1021/ef7002969

    Article  CAS  Google Scholar 

  43. Sugumaran P, Priya Susan V, Ravichandran P, Seshadri S (2012) Production and characterization of activated carbon from banana empty fruit bunch and delonix regia fruit pod. J Sustain Energy Environ 3:125–132

    Google Scholar 

  44. Cruz G (2013) Production of activated carbon from cocoa (Theobroma cacao) pod husk. J Civ Environ Eng 02(02):2–7. https://doi.org/10.4172/2165-784x.1000109

    Article  Google Scholar 

  45. Adeyi O (2010) Proximate composition of some agricultural wastes in Nigeria and their potential use in activated carbon production. J Appl Sci Environ Manag. https://doi.org/10.4314/jasem.v14i1.56490

    Article  Google Scholar 

  46. Kambo HS, Dutta A (2015) Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel. Energy Convers Manag 105:746–755. https://doi.org/10.1016/J.ENCONMAN.2015.08.031

    Article  CAS  Google Scholar 

  47. Uçar S, Erdem M, Tay T, Karagöz S (2009) Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl2 activation. Appl Surf Sci 255(21):8890–8896. https://doi.org/10.1016/j.apsusc.2009.06.080

    Article  CAS  Google Scholar 

  48. Chen CX, Huang B, Li T, Wu GF (2012) Preparation of phosphoric acid activated carbon from sugarcane bagasse by mechanochemical processing. BioResources 7(4):5109–5116. https://doi.org/10.15376/biores.7.4.5109-5116

    Article  CAS  Google Scholar 

  49. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

    Article  CAS  Google Scholar 

  50. Cagnon B, Py X, Guillot A, Stoeckli F, Chambat G (2009) Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresour Technol 100(1):292–298. https://doi.org/10.1016/j.biortech.2008.06.009

    Article  CAS  Google Scholar 

  51. Cagnon B, Py X, Guillot A, Stoeckli F (2003) The effect of the carbonization/activation procedure on the microporous texture of the subsequent chars and active carbons. Microporous Mesoporous Mater 57(3):273–282. https://doi.org/10.1016/S1387-1811(02)00597-8

    Article  CAS  Google Scholar 

  52. Yu Y, Lou X, Wu H (2008) Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energy Fuels 22(1):46–60. https://doi.org/10.1021/ef700292p

    Article  CAS  Google Scholar 

  53. Abnisa F, Daud WMAW, Husin WNW, Sahu JN (2011) Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process. Biomass Bioenerg 35(5):1863–1872. https://doi.org/10.1016/j.biombioe.2011.01.033

    Article  CAS  Google Scholar 

  54. Yang H, Yan R, Chen H, Zheng C, Lee DH, Liang DT (2006) In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy Fuels 20(1):388–393. https://doi.org/10.1021/ef0580117

    Article  CAS  Google Scholar 

  55. Acharya B, Dutta A, Minaret J (2015) Review on comparative study of dry and wet torrefaction. Sustain Energy Technol Assess 12:26–37. https://doi.org/10.1016/j.seta.2015.08.003

    Article  Google Scholar 

  56. Kambo HS, Dutta A (2014) Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization. Appl Energy 135:182–191. https://doi.org/10.1016/j.apenergy.2014.08.094

    Article  CAS  Google Scholar 

  57. Zhang B et al (2018) Hydrothermal carbonization of fruit wastes: a promising technique for generating hydrochar. Energies 11(8):1–14. https://doi.org/10.3390/en11082022

    Article  CAS  Google Scholar 

  58. Heidari M, Dutta A, Acharya B, Mahmud S (2018) A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion. J Energy Inst. https://doi.org/10.1016/j.joei.2018.12.003

    Article  Google Scholar 

  59. Unz S, Wen T, Beckmann M (2010) Characterization of biomass used in thermal processes with regard to the kinetic properties. Proceedings of the 35th international technical conference on clean coal & fuel systems

  60. Christian DG, Yates NE, Riche AB (2006) The effect of harvest date on the yield and mineral content of Phalaris arundinacea L. (reed canary grass) genotypes screened for their potential as energy crops in southern England. J Sci Food Agric 86(8):1181–1188. https://doi.org/10.1002/jsfa.2437

    Article  CAS  Google Scholar 

  61. Lewandowski I, Heinz A (2003) Delayed harvest of miscanthus—influences on biomass quantity and quality and environmental impacts of energy production. Eur J Agron 19(1):45–63. https://doi.org/10.1016/S1161-0301(02)00018-7

    Article  Google Scholar 

  62. Pordesimo LO, Hames BR, Sokhansanj S, Edens WC (2005) Variation in corn stover composition and energy content with crop maturity. Biomass Bioenerg 28(4):366–374. https://doi.org/10.1016/j.biombioe.2004.09.003

    Article  CAS  Google Scholar 

  63. Zhuo Y, Geladi P, Lestander T, Xiong S, Zhang Y (2009) Variations in fuel characteristics of corn (Zea mays) stovers: general spatial patterns and relationships to soil properties. Renew Energy 35(6):1185–1191. https://doi.org/10.1016/j.renene.2009.11.032

    Article  CAS  Google Scholar 

  64. Choy KKH, Barford JP, McKay G (2005) Production of activated carbon from bamboo scaffolding waste—process design, evaluation and sensitivity analysis. Chem Eng J 109(1):147–165. https://doi.org/10.1016/j.cej.2005.02.030

    Article  CAS  Google Scholar 

  65. Hirunpraditkoon S, Tunthong N, Ruangchai A, Nuithitikul K (2011) Adsorption capacities of activated carbons prepared from bamboo by KOH activation. Int Sch Sci Res Innov 5(6):477–481

    Google Scholar 

  66. Qiu K, Yang S, Yang J (2009) Characteristics of activated carbon prepared from Chinese fir sawdust by zinc chloride activation under vacuum condition. J Cent South Univ Technol 16(3):385–391. https://doi.org/10.1007/s11771-009-0065-8

    Article  CAS  Google Scholar 

  67. Regmi B (2017) Thermal pre-treatment of hybrid poplar wood (Populus nigra-NM 6)”. University of Guelph, Guelph

    Google Scholar 

  68. Björnbom E et al (2006) Characterization and application of activated carbon produced by H3PO4 and water vapor activation. Fuel Process Technol 87(10):899–905. https://doi.org/10.1016/j.fuproc.2006.06.005

    Article  CAS  Google Scholar 

  69. Acharya B (2013) Torrefaction and Pelletization of different forms of biomass of Ontario. University of Guelph, Guelph

    Google Scholar 

  70. Alothman Z, Habila M, Ali R (2011) Preparation of activated carbon using the copyrolysis of agricultural and municipal solid wastes at a low carbonization temperature. Int Conf Biol Environ Chem 24:67–72

    Google Scholar 

  71. Ai N, Zeng G, Zhou H, He Y (2013) Co-production of activated carbon and bio-oil from agricultural residues by molten salt pyrolysis. BioResources 8(2):1551–1562. https://doi.org/10.15376/biores.8.2.1551-1562

    Article  Google Scholar 

  72. Sule IO (2012) Torrefaction behaviour of agricultural biomass. University of Guelph, Guelph

    Google Scholar 

  73. Hartono SB, Hindarso H, Sudaryanto Y, Irawaty W, Ismadji S (2005) High surface area activated carbon prepared from cassava peel by chemical activation. Bioresour Technol 97(5):734–739. https://doi.org/10.1016/j.biortech.2005.04.029

    Article  CAS  Google Scholar 

  74. Granados DL, Silva HS, Sardella MF, Petkovic LM, Deiana AC (2005) Use of grape must as a binder to obtain activated carbon briquettes. Brazilian J Chem Eng 21(4):585–591. https://doi.org/10.1590/s0104-66322004000400007

    Article  Google Scholar 

  75. Tsai WT, Chang CY, Wang SY, Chang CF, Chien SF, Sun HF (2001) Cleaner production of carbon adsorbents by utilizing agricultural waste corn cob. Resour Conserv Recycl 32(1):43–53. https://doi.org/10.1016/S0921-3449(00)00093-8

    Article  Google Scholar 

  76. Yee Jun T, Devi Arumugam S, Hidayah N, Abdullah A, Abdul Latif P (2010) Effect of activation temperature and heating duration on physical characteristics of activated carbon prepared from agriculture waste. Environ. https://doi.org/10.14456/ea.2010.53

    Article  Google Scholar 

  77. Gokce CE, Guneysu S, Aydin S, Arayici S (2009) Comparison of activated carbon and pyrolyzed biomass for removal of humic acid from aqueous solution. Open Environ Pollut Toxicol J 1(1):43–48. https://doi.org/10.2174/1876397900901010043

    Article  CAS  Google Scholar 

  78. Babich A, Senk D, Fernandez M (2010) Charcoal behaviour by its injection into the modern blast furnace. ISIJ Int 50(1):81–88. https://doi.org/10.2355/isijinternational.50.81

    Article  CAS  Google Scholar 

  79. Miroshnichenko IV, Miroshnichenko DV, Shulga IV, Balaeva YS, Pereima VV (2019) Calorific value of coke. 1. prediction. Coke Chem 62(4):143–149. https://doi.org/10.3103/S1068364X19040057

    Article  Google Scholar 

  80. Hansson J, Berndes G, Johnsson F, Kjärstad J (2009) Co-firing biomass with coal for electricity generation—an assessment of the potential in EU27. Energy Policy 37(4):1444–1455. https://doi.org/10.1016/j.enpol.2008.12.007

    Article  Google Scholar 

  81. Niu Y, Tan H, Hui S (2016) Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. Progress Energy Combust Sci. https://doi.org/10.1016/j.pecs.2015.09.003

    Article  Google Scholar 

  82. Demirbas A (2005) Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog Energy Combust Sci 31(2):171–192. https://doi.org/10.1016/j.pecs.2005.02.002

    Article  CAS  Google Scholar 

  83. Bryers RW (1996) Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Prog Energy Combust Sci 22(1):29–120. https://doi.org/10.1016/0360-1285(95)00012-7

    Article  CAS  Google Scholar 

  84. Vamvuka D, Zografos D (2004) Predicting the behaviour of ash from agricultural wastes during combustion. Fuel 83(14–15):2051–2057. https://doi.org/10.1016/j.fuel.2004.04.012

    Article  CAS  Google Scholar 

  85. Miles TR, Miles TRJ, Baxter LL, Bryers RW, Jenkins BM, Oden LL (1995) Alkali deposits found in biomass power plants: a preliminary investigation of their extent and nature. doi: https://doi.org/10.2172/251288

  86. Wei X, Schnell U, Hein K (2005) Behaviour of gaseous chlorine and alkali metals during biomass thermal utilisation. Fuel 84(7–8):841–848. https://doi.org/10.1016/j.fuel.2004.11.022

    Article  CAS  Google Scholar 

  87. Theis M, Skrifvars B-J, Hupa M, Tran H (2006) Fouling tendency of ash resulting from burning mixtures of biofuels. Part 1: deposition rates. Fuel 85(7–8):1125–1130. https://doi.org/10.1016/j.fuel.2005.10.010

    Article  CAS  Google Scholar 

  88. Lapuerta M, Hernández JJ, Pazo A, López J (2008) Gasification and co-gasification of biomass wastes: effect of the biomass origin and the gasifier operating conditions. Fuel Process Technol 89(9):828–837. https://doi.org/10.1016/j.fuproc.2008.02.001

    Article  CAS  Google Scholar 

  89. Misra MK, Ragland KW, Baker AJ (1993) Wood ash composition as a function of furnace temperature. Biomass Bioenerg 4(2):103–116. https://doi.org/10.1016/0961-9534(93)90032-Y

    Article  CAS  Google Scholar 

  90. Wigley F, Williamson J, Malmgren A, Riley G (2007) Ash deposition at higher levels of coal replacement by biomass. Fuel Process Technol 88(11–12):1148–1154. https://doi.org/10.1016/j.fuproc.2007.06.015

    Article  CAS  Google Scholar 

  91. Werther J, Saenger M, Hartge E-U, Ogada T, Siagi Z (2000) Combustion of agricultural residues. Prog Energy Combust Sci 26(1):1–27. https://doi.org/10.1016/S0360-1285(99)00005-2

    Article  CAS  Google Scholar 

  92. Thy P, Lesher CE, Jenkins BM (2000) Experimental determination of high-temperature elemental losses from biomass slag. Fuel 79(6):693–700. https://doi.org/10.1016/S0016-2361(99)00195-7

    Article  CAS  Google Scholar 

  93. Wieck-Hansen K, Overgaard P, Larsen OH (2000) Cofiring coal and straw in a 150 MWe power boiler experiences. Biomass Bioenerg 19(6):395–409. https://doi.org/10.1016/S0961-9534(00)00051-9

    Article  Google Scholar 

  94. Moilanen A (2006) Thermogravimetric characterisations of biomass and waste for gasification processes. VTT, Espoo

    Google Scholar 

  95. Cores A, Babich A, Muñiz M, Isidro A, Ferreira S, Martín R (2007) Iron ores, fluxes and tuyere injected coals used in the blast furnace. Ironmak Steelmak 34(3):231–240. https://doi.org/10.1179/174328107X168066

    Article  CAS  Google Scholar 

  96. Zamalloa M, Utigard TA (1995) Characterization of industrial coke structures. ISIJ Int 35(5):449–457. https://doi.org/10.2355/isijinternational.35.449

    Article  CAS  Google Scholar 

  97. Jiao KX, Zhang JL, Liu ZJ, Chen CL, Liu F (2017) Circulation and accumulation of harmful elements in blast furnace and their impact on the fuel consumption. Ironmak Steelmak 44(5):344–350. https://doi.org/10.1080/03019233.2016.1210913

    Article  CAS  Google Scholar 

  98. Wang W, Wang J, Xu R, Yu Y, Jin Y, Xue Z (2017) Influence mechanism of zinc on the solution loss reaction of coke used in blast furnace. Fuel Process Technol 159:118–127. https://doi.org/10.1016/j.fuproc.2017.01.039

    Article  CAS  Google Scholar 

  99. Trinkel V, Mallow O, Thaler C, Schenk J, Rechberger H, Fellner J (2015) Behavior of chromium, nickel, lead, zinc, cadmium, and mercury in the blast furnace—a critical review of literature data and plant investigations. Ind Eng Chem Res 54(47):11759–11771. https://doi.org/10.1021/acs.iecr.5b03442

    Article  CAS  Google Scholar 

  100. Wang H et al (2018) Damage mechanism of blast furnace tuyere by zinc. Ironmak Steelmak 45(6):560–565. https://doi.org/10.1080/03019233.2017.1303912

    Article  CAS  Google Scholar 

  101. Chernousov PI, Golubev OV, Petelin AL (2011) Phosphorus, lead, and arsenic in blast-furnace smelting. Metallurgist 55(3–4):242–250. https://doi.org/10.1007/s11015-011-9418-2

    Article  CAS  Google Scholar 

  102. Ng KW, Giroux L, MacPhee T, Todoschuk T (2012) Incorporation of charcoal in coking coal blend—a study of the effects on carbonization conditions and coke quality. 7th AISTech conference proceedings, association iron steel technology

  103. Goyal HB, Seal D, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sustain Energy Rev 12(2):504–517. https://doi.org/10.1016/j.rser.2006.07.014

    Article  CAS  Google Scholar 

  104. Manyà JJ (2012) Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ Sci Technol 46(15):7939–7954. https://doi.org/10.1021/es301029g

    Article  CAS  Google Scholar 

  105. Ng KW, Giroux L, Macphee T (2012) Wood pellets for ironmaking from a life cycle analysis perspective. In AISTech—iron and steel technology conference proceedings, no. 613, pp 331–338

  106. Mandova H et al (2018) Possibilities for CO2 emission reduction using biomass in European integrated steel plants. Biomass Bioenergy 115:231–243. https://doi.org/10.1016/j.biombioe.2018.04.021

    Article  CAS  Google Scholar 

  107. Leon MA, Eng D, Dutta A, Eng P (2011) Pros and cons of torrefaction of woody biomass. University of Guelph School of Engineering, Canada

    Google Scholar 

  108. Jahanshahi S et al (2015) Development of low-emission integrated steelmaking process. J Sustain Metall 1(1):94–114. https://doi.org/10.1007/s40831-015-0008-6

    Article  Google Scholar 

  109. Liu Y, Shen Y (2021) Modelling and optimisation of biomass injection in ironmaking blast furnaces. Progress Energy Combust Sci. https://doi.org/10.1016/j.pecs.2021.100952

    Article  Google Scholar 

  110. van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenerg 35(9):3748–3762. https://doi.org/10.1016/j.biombioe.2011.06.023

    Article  CAS  Google Scholar 

  111. Tumuluru JS, Sokhansanji S, Hess R, Wright CT, Boardman RD (2011) Ehsan. Ind Biotechnol 7:384–401. https://doi.org/10.1089/ind.2011.0014

    Article  Google Scholar 

  112. Eseyin AE, Steele PH, Pittman CU (2015) Current trends in the production and applications of torrefied wood/biomass—a review. BioResources 10(4):8812–8858. https://doi.org/10.15376/biores.10.4.8812-8858

    Article  CAS  Google Scholar 

  113. Chen WH, Hsu HC, Lu KM, Lee WJ, Lin TC (2011) Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass. Energy 36(5):3012–3021. https://doi.org/10.1016/j.energy.2011.02.045

    Article  CAS  Google Scholar 

  114. Rousset P, Aguiar C, Labbé N, Commandré JM (2011) Enhancing the combustible properties of bamboo by torrefaction. Bioresour Technol 102(17):8225–8231. https://doi.org/10.1016/j.biortech.2011.05.093

    Article  CAS  Google Scholar 

  115. Medic D, Darr M, Shah A, Potter B, Zimmerman J (2012) Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel 91(1):147–154. https://doi.org/10.1016/j.fuel.2011.07.019

    Article  CAS  Google Scholar 

  116. Wannapeera J, Fungtammasan B, Worasuwannarak N (2011) Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass. J Anal Appl Pyrolysis 92(1):99–105. https://doi.org/10.1016/j.jaap.2011.04.010

    Article  CAS  Google Scholar 

  117. Brownsort PA (2009) Biomass pyrolysis processes: performance parameters and their influence on biochar system benefits. University of Edinburgh, Edinburgh

    Google Scholar 

  118. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3):848–889. https://doi.org/10.1021/ef0502397

    Article  CAS  Google Scholar 

  119. Onay O, Kockar OM (2003) Slow, fast and flash pyrolysis of rapeseed. Renew Energy 28(15):2417–2433. https://doi.org/10.1016/S0960-1481(03)00137-X

    Article  CAS  Google Scholar 

  120. Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sustain Energy Rev 4(1):1–73. https://doi.org/10.1016/S1364-0321(99)00007-6

    Article  CAS  Google Scholar 

  121. S. Jones et al., “Production of gasoline and diesel from biomass via fast pyrolysis, hydrotreating and hydrocracking: a design case,” Energy, no. February, p. 76, 2009, doi: PNNL-22684.pdf.

  122. Laird DA, Brown RC, Amonette JE, Lehmann J (2009) Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod Biorefining 3(5):547–562. https://doi.org/10.1002/bbb.169

    Article  CAS  Google Scholar 

  123. Şensöz S, Angın D, Yorgun S (2000) Influence of particle size on the pyrolysis of rapeseed (Brassica napus L.): fuel properties of bio-oil. Biomass Bioenerg 19(4):271–279. https://doi.org/10.1016/S0961-9534(00)00041-6

    Article  Google Scholar 

  124. Onay O (2007) Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Process Technol 88(5):523–531. https://doi.org/10.1016/j.fuproc.2007.01.001

    Article  CAS  Google Scholar 

  125. Karaosmanoğlu F, Tetik E, Göllü E (1999) Biofuel production using slow pyrolysis of the straw and stalk of the rapeseed plant. Fuel Process Technol 59(1):1–12. https://doi.org/10.1016/S0378-3820(99)00004-1

    Article  Google Scholar 

  126. Ronsse F, van Hecke S, Dickinson D, Prins W (2013) Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy 5(2):104–115. https://doi.org/10.1111/gcbb.12018

    Article  CAS  Google Scholar 

  127. Tripathi M, Sahu JN, Ganesan P, Dey TK (2015) Effect of temperature on dielectric properties and penetration depth of oil palm shell (OPS) and OPS char synthesized by microwave pyrolysis of OPS. Fuel 153:257–266. https://doi.org/10.1016/j.fuel.2015.02.118

    Article  CAS  Google Scholar 

  128. Mubarak NM, Kundu A, Sahu JN, Abdullah EC, Jayakumar NS (2014) Synthesis of palm oil empty fruit bunch magnetic pyrolytic char impregnating with FeCl3 by microwave heating technique. Biomass Bioenerg 61:265–275. https://doi.org/10.1016/j.biombioe.2013.12.021

    Article  CAS  Google Scholar 

  129. Yanik J, Kornmayer C, Saglam M, Yüksel M (2007) Fast pyrolysis of agricultural wastes: characterization of pyrolysis products. Fuel Process Technol 88(10):942–947. https://doi.org/10.1016/j.fuproc.2007.05.002

    Article  CAS  Google Scholar 

  130. Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg 38:68–94. https://doi.org/10.1016/j.biombioe.2011.01.048

    Article  CAS  Google Scholar 

  131. Sevilla M, Maciá-Agulló JA, Fuertes AB (2011) Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products. Biomass Bioenerg 35(7):3152–3159. https://doi.org/10.1016/j.biombioe.2011.04.032

    Article  CAS  Google Scholar 

  132. Agirre I, Griessacher T, Rösler G, Antrekowitsch J (2013) Production of charcoal as an alternative reducing agent from agricultural residues using a semi-continuous semi-pilot scale pyrolysis screw reactor. Fuel Process Technol 106:114–121. https://doi.org/10.1016/j.fuproc.2012.07.010

    Article  CAS  Google Scholar 

  133. Angın D (2013) Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour Technol 128:593–597. https://doi.org/10.1016/j.biortech.2012.10.150

    Article  CAS  Google Scholar 

  134. Ghysels S, Estrada Léon AE, Pala M, Schoder KA, Van Acker J, Ronsse F (2019) Fast pyrolysis of mannan-rich ivory nut (Phytelephas aequatorialis) to valuable biorefinery products. Chem Eng J 373:446–457. https://doi.org/10.1016/j.cej.2019.05.042

    Article  CAS  Google Scholar 

  135. Wang Y, Yin R, Liu R (2014) Characterization of biochar from fast pyrolysis and its effect on chemical properties of the tea garden soil. J Anal Appl Pyrolysis 110(1):375–381. https://doi.org/10.1016/j.jaap.2014.10.006

    Article  CAS  Google Scholar 

  136. Fu P, Yi W, Li Z, Li Y (2019) Comparative study on fast pyrolysis of agricultural straw residues based on heat carrier circulation heating. Bioresour Technol 271:136–142. https://doi.org/10.1016/j.biortech.2018.09.099

    Article  CAS  Google Scholar 

  137. Colantoni A et al (2016) Characterization of biochars produced from pyrolysis of pelletized agricultural residues. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2016.06.003

    Article  Google Scholar 

  138. Kruse A, Funke A, Titirici MM (2013) Hydrothermal conversion of biomass to fuels and energetic materials. Curr Opin Chem Biol 17(3):515–521. https://doi.org/10.1016/j.cbpa.2013.05.004

    Article  CAS  Google Scholar 

  139. Chembukulam SK, Dandge AS, Rao NLK, Seshagiri K, Vaidyeswaran R (1981) Smokeless fuel from carbonized sawdust. Ind Eng Chem Prod Res Dev 20(4):714–719. https://doi.org/10.1021/i300004a024

    Article  CAS  Google Scholar 

  140. Xiao LP, Shi ZJ, Xu F, Sun RC (2012) Hydrothermal carbonization of lignocellulosic biomass. Bioresour Technol 118:619–623. https://doi.org/10.1016/j.biortech.2012.05.060

    Article  CAS  Google Scholar 

  141. Bergius F, Specht H (1913) Die Anwendung hoher drucke bei chemischen Vorgängen und eine nechbildung des Entstehungsprozesses der Steinkohle. W. Knapp

  142. Jamari SS, Howse JR (2012) The effect of the hydrothermal carbonization process on palm oil empty fruit bunch. Biomass Bioenerg 47:82–90. https://doi.org/10.1016/j.biombioe.2012.09.061

    Article  CAS  Google Scholar 

  143. Fu M-M, Mo C-H, Li H, Zhang Y-N, Huang W-X, Wong MH (2019) Comparison of physicochemical properties of biochars and hydrochars produced from food wastes. J Clean Prod 236:117637. https://doi.org/10.1016/j.jclepro.2019.117637

    Article  CAS  Google Scholar 

  144. Al-Kaabi Z, Pradhan R, Thevathasan N, Gordon A, Chiang YW, Dutta A (2019) Bio-carbon production by oxidation and hydrothermal carbonization of paper recycling black liquor. J Clean Prod. https://doi.org/10.1016/j.jclepro.2018.12.175

    Article  Google Scholar 

  145. Wang L et al (2020) Hydrothermal co-carbonization of sewage sludge and high concentration phenolic wastewater for production of solid biofuel with increased calorific value. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.120317

    Article  Google Scholar 

  146. Kang S, Li X, Fan J, Chang J (2012) Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, d-xylose, and wood meal. Ind Eng Chem Res 51(26):9023–9031. https://doi.org/10.1021/ie300565d

    Article  CAS  Google Scholar 

  147. Kambo HS (2014) Energy densification of lignocellulosic biomass via hydrothermal carbonization and torrefaction. University of Guelph, Guelph

    Google Scholar 

  148. Titirici M-M, Antonietti M (2010) Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem Soc Rev 39(1):103–116. https://doi.org/10.1039/B819318P

    Article  CAS  Google Scholar 

  149. Brunner G (2009) Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. J Supercrit Fluids 47(3):373–381. https://doi.org/10.1016/j.supflu.2008.09.002

    Article  CAS  Google Scholar 

  150. Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefining 4(2):160–177. https://doi.org/10.1002/bbb.198

    Article  CAS  Google Scholar 

  151. Reza MT, Uddin MH, Lynam JG, Hoekman SK, Coronella CJ (2014) Hydrothermal carbonization of loblolly pine: reaction chemistry and water balance. Biomass Convers Biorefinery 4(4):311–321. https://doi.org/10.1007/s13399-014-0115-9

    Article  CAS  Google Scholar 

  152. Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon NY 47(9):2281–2289. https://doi.org/10.1016/j.carbon.2009.04.026

    Article  CAS  Google Scholar 

  153. Reza MT, Lynam JG, Vasquez VR, Coronella CJ (2012) Pelletization of biochar from hydrothermally carbonized wood. Environ Prog Sustain Energy 31(2):225–234. https://doi.org/10.1002/ep.11615

    Article  CAS  Google Scholar 

  154. Sevilla M, Fuertes AB (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem A Eur J 15(16):4195–4203. https://doi.org/10.1002/chem.200802097

    Article  CAS  Google Scholar 

  155. Reza MT, Lynam JG, Uddin MH, Coronella CJ (2013) Hydrothermal carbonization: fate of inorganics. Biomass Bioenerg 49:86–94. https://doi.org/10.1016/j.biombioe.2012.12.004

    Article  CAS  Google Scholar 

  156. Zhao P, Chen H, Ge S, Yoshikawa K (2013) Effect of the hydrothermal pretreatment for the reduction of no emission from sewage sludge combustion. Appl Energy 111(2):199–205. https://doi.org/10.1016/j.apenergy.2013.05.029

    Article  CAS  Google Scholar 

  157. Kim D, Lee K, Park KY (2014) Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery. Fuel 130:120–125. https://doi.org/10.1016/j.fuel.2014.04.030

    Article  CAS  Google Scholar 

  158. He C, Giannis A, Wang JY (2013) Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior. Appl Energy 111:257–266. https://doi.org/10.1016/j.apenergy.2013.04.084

    Article  CAS  Google Scholar 

  159. Yao Z, Ma X (2018) Characteristics of co-hydrothermal carbonization on polyvinyl chloride wastes with bamboo. Bioresour Technol 247(381):302–309. https://doi.org/10.1016/j.biortech.2017.09.098

    Article  CAS  Google Scholar 

  160. Bach QV, Tran KQ, Khalil RA, Skreiberg Ø, Seisenbaeva G (2013) Comparative assessment of wet torrefaction. Energy Fuels 27(11):6743–6753. https://doi.org/10.1021/ef401295w

    Article  CAS  Google Scholar 

  161. Heidari M, Salaudeen S, Norouzi O, Acharya B, Dutta A (2020) Numerical comparison of a combined hydrothermal carbonization and anaerobic digestion system with direct combustion of biomass for power production. Processes. https://doi.org/10.3390/pr8010043

    Article  Google Scholar 

  162. Kumar M, Olajire Oyedun A, Kumar A (2018) A review on the current status of various hydrothermal technologies on biomass feedstock. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2017.05.270

    Article  Google Scholar 

  163. Heidari M, Salaudeen S, Dutta A, Acharya B (2018) Effects of process water recycling and particle sizes on hydrothermal carbonization of biomass. Energy Fuels 32(11):11576–11586. https://doi.org/10.1021/acs.energyfuels.8b02684

    Article  CAS  Google Scholar 

  164. Kambo HS, Minaret J, Dutta A (2018) Process water from the hydrothermal carbonization of biomass: a waste or a valuable product? Waste Biomass Valoriz 9(7):1181–1189. https://doi.org/10.1007/s12649-017-9914-0

    Article  CAS  Google Scholar 

  165. Biller P, Sharma BK, Kunwar B, Ross AB (2015) Hydroprocessing of bio-crude from continuous hydrothermal liquefaction of microalgae. Fuel 159:197–205. https://doi.org/10.1016/j.fuel.2015.06.077

    Article  CAS  Google Scholar 

  166. Macdermid-Watts K, Adewakun E, Abhi TD, Pradhan R, Dutta A (2021) Hydrothermal carbonization valorization as an alternative application for corn bio-ethanol by-products. J Environ Chem Eng 9(4):105431. https://doi.org/10.1016/j.jece.2021.105431

    Article  CAS  Google Scholar 

  167. Merzari F, Langone M, Andreottola G, Fiori L (2019) Methane production from process water of sewage sludge hydrothermal carbonization: a review, valorising sludge through hydrothermal carbonization. Crit Rev Environ Sci Technol 49(11):947

    Article  CAS  Google Scholar 

  168. Fettig J, Austermann-Haun U, Meier JF, Busch A, Gilbert E (2019) Options for removing refractory organic substances in pre-treated process water from hydrothermal carbonization. Water (Switzerland) 11(4):730. https://doi.org/10.3390/w11040730

    Article  CAS  Google Scholar 

  169. Mayyas M, Nekouei RK, Sahajwalla V (2019) Valorization of lignin biomass as a carbon feedstock in steel industry: iron oxide reduction, steel carburizing and slag foaming. J Clean Prod 219:971–980. https://doi.org/10.1016/j.jclepro.2019.02.114

    Article  CAS  Google Scholar 

  170. Machado JGMS, Osório E, Vilela ACF (2010) Reactivity of brazilian coal, charcoal, imported coal and blends aiming to their injection into blast furnaces. Mater Res 13:287–292

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to acknowledge the financial support received from Natural Sciences and Engineering Research Council of Canada (NSERC), Ministry of the Environment and Climate Change (MOECC) for Best in Science program, and the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA). The authors also acknowledge the financial support from the Biomass Canada Cluster (BMC) which is funded through the Agriculture and Agri-Food Canada’s AgriScience program and industry partners.

Author information

Authors and Affiliations

Authors

Contributions

TDA contributed to conceptualization and writing—original draft preparation. KMW contributed to writing—original draft, review, and editing. SAS contributed to writing—review and editing. AH contributed to Writing—original draft. KWN contributed to writing—review and editing. TT contributed to writing—review and editing. AD contributed to conceptualization, supervision, writing—review, and editing.

Corresponding author

Correspondence to Animesh Dutta.

Ethics declarations

Competing Interest

The authors declare they have no conflict of interest relevant to this article.

Additional information

The contributing editor for this article was Sharif Jahanshahi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abhi, T.D., MacDermid-Watts, K., Salaudeen, S.A. et al. Challenges and Opportunities of Agricultural Biomass as a Replacement for PCI Coal in the Ironmaking Blast Furnace: A Review. J. Sustain. Metall. 9, 927–949 (2023). https://doi.org/10.1007/s40831-023-00720-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-023-00720-2

Keywords

Navigation