Skip to main content

Advertisement

Log in

ANN-Based Model to Predict the Viscosity of Molten Blast Furnace Slag at High Temperatures of > 1600 K

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Accurate viscosity of molten blast furnace (BF) slag is indispensable for the development of centrifugal-granulation-assisted thermal energy recovery (CGATER) to decarbonize the iron and steel industry. Yet, direct experimental measurement of this quantity remains a formidable task due to the high temperature of 1600 Kelvin or above. Empirical models, if with high fidelity, are ideal to enable a fast and accurate prediction of the high-temperature viscosity of molten blast furnace slag. In this communication, we embark on a new effort to develop an artificial neural network (ANN)-based model to provide accurate viscosity prediction of molten blast furnace slag. This model was established based on a grid search method with approximately 4000 experimental measurements collected as the train and validation datasets. The viscosities of three types of molten blast furnace slag were measured above 1600 K as cross validation for the ANN model. Our ANN model agrees well with the experimental measurement with a small uncertainty of < 6%. Finally, an open-source artificial neural network code with a graphical user interface (GUI) was developed to provide a user-friendly portal for high-fidelity viscosity prediction. The present study not only enables a definitive, unified viscosity determination but also provides a flexible tool for the database establishment of the thermophysical properties of molten BF slag.

Graphical Abstract

We developed an ANN-based model to enable fast and accurate viscosity prediction of molten blast furnace slags at high temperatures and provided a user-interfaced open-source program, i.e. X-slag: Thermophysical Property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang H, Wang H, Zhu X et al (2013) A review of waste heat recovery technologies towards molten slag in steel industry. Appl Energy 112:956–966

    Google Scholar 

  2. https://worldsteel.org/steel-by-topic/statistics/world-steel-in-figures/

  3. Lv Yiwen, Zhu Xun, Wang Hong, et al (2020) Centrifugal granulation and waste heat recovery technology for high temperature molten slag. China Basic Sci 28–36

  4. Ding B, Zhu X, Wang H et al (2018) Numerical investigation on phase change cooling and crystallization of a molten blast furnace slag droplet. Int J Heat Mass Transf 118:471–479

    Google Scholar 

  5. Gao J, Feng Y, Feng D et al (2020) Solidification with crystallization behavior of molten blast furnace slag particle during the cooling process. Int J Heat Mass Transf 146:118888

    Google Scholar 

  6. Lv Y-W, Zhu X, Wang H et al (2021) A hybrid cooling system to enable adhesion-free heat recovery from centrifugal granulated slag particles. Appl Energy 303:117645

    Google Scholar 

  7. Liu J, Yu Q, Peng J et al (2015) Thermal energy recovery from high-temperature blast furnace slag particles. Int Commun Heat Mass Transfer 69:23–28

    Google Scholar 

  8. Zhao YY (2004) Analysis of flow development in centrifugal atomization: Part I. Film thickness of a fully spreading melt. Modell Simul Mater Sci Eng 12:959–971

    Google Scholar 

  9. Wang D, Ling X, Peng H (2014) Theoretical analysis of free-surface film flow on the rotary granulating disk in waste heat recovery process of molten slag. Appl Therm Eng 63:387–395

    Google Scholar 

  10. Pan Y, Witt PJ, Kuan B, Xie D (2014) CFD modelling of the effects of operating parameters on the spreading of liquids on a spinning disc. J Comput Multiphase Flows 6:49–64

    Google Scholar 

  11. Kato M, Minowa S (1969) Viscosity measurements of molten slag. Trans ISIJ 9:31–38

    CAS  Google Scholar 

  12. Machin JS, Hanna DL (1945) Viscosity studies of system CaO-MgO-Al2O3-SiO2: 1, 40% SiO2*. J Am Ceram Soc 28:310–316

    CAS  Google Scholar 

  13. Machin JS, Yee TB (1948) Viscosity studies of system CaO-MgO-Al2O3-SiO2: II, CaO-Al2O3-SiO2*. J Am Ceram Soc 31:200–204

    CAS  Google Scholar 

  14. Machin JS, Yee TB, Hanna DL (1952) Viscosity studies of system CaO–MgO–Al2O3–SiO2: III, 35, 45, and 50% SiO2. J Am Ceram Soc 35:322–325

    CAS  Google Scholar 

  15. Machin JS, Yee TB (1954) Viscosity studies of system CaO–MgO–Al2O3–SiO3: IV, 60 and 65% SiO2. J Am Ceram Soc 37:177–186

    CAS  Google Scholar 

  16. Onodera K, Nakamura A, Hakamada S, et al (2016) Thermophysical Property Measurements of Molten Slag and Welding Flux by Aerodynamic Levitator. In: Advances in Molten Slags, Fluxes, and Salts: Proceedings of The 10th International. p 8

  17. Siafakas D, Matsushita T, Jarfors AEW et al (2018) Viscosity of SiO2–CaO–Al2O3 slag with low silica—influence of CaO/Al2O3, SiO2/Al2O3 ratio. ISIJ Int 58:2180–2185

    CAS  Google Scholar 

  18. Fang SJ, Pang Z, Xing X, Xu R (2021) Thermodynamic properties, viscosity, and structure of CaO–SiO2–MgO–Al2O3–TiO2–based slag. Materials 14:1–12

    Google Scholar 

  19. Feng C, Gao L, Tang J et al (2020) Effects of MgO/Al2O3 ratio on viscous behaviors and structures of MgO–Al2O3–TiO2–CaO–SiO2 slag systems with high TiO2 content and low CaO/SiO2 ratio. Trans Nonferrous Met Soc China 30:800–811

    CAS  Google Scholar 

  20. Yan B, Liu Y, Shu Q et al (2019) Measurements and model estimations of viscosities of the MnO-CaO-SiO2-MgO-Al2O3 melts. Metall Mater Trans B 50:376–384

    CAS  Google Scholar 

  21. Jiao KX, Chang ZY, Chen C, Zhang JL (2019) Thermodynamic properties and viscosities of CaO-SiO2-MgO-Al2O3 slags. Metall Mater Trans B 50:1012–1022

    CAS  Google Scholar 

  22. Chen Z, Wang H, Sun Y et al (2019) Insight into the relationship between viscosity and structure of CaO-SiO2-MgO-Al2O3 molten slags. Metall Mater Trans B 50:2930–2941

    CAS  Google Scholar 

  23. Urbain G (1987) Viscosity estimation of slags. Steel Res 58:111–116

    CAS  Google Scholar 

  24. Mills KC, Sridhar S (1999) Viscosities of ironmaking and steelmaking slags. Ironmak Steelmak 26:262–268

    CAS  Google Scholar 

  25. Iida T, Sakai H, Kita Y, Shigeno K (2000) An equation for accurate prediction of the viscosities of blast furnace type slags from chemical composition. ISIJ Int 40:S110–S114

    CAS  Google Scholar 

  26. Iida T, Sakai H, Kita Y, Murakami K (2000) Equation for estimating viscosities of industrial mold fluxes. High Temp Mater Process (London) 19:153–164

    CAS  Google Scholar 

  27. Ray HS, Pal S (2004) Simple method for theoretical estimation of viscosity of oxide melts using optical basicity. Ironmak Steelmak 31:125–130

    CAS  Google Scholar 

  28. Hu X, Ren Z, Zhang G et al (2012) A model for estimating the viscosity of blast furnace slags with optical basicity. Int J Miner Metall Mater 19:1088–1092

    CAS  Google Scholar 

  29. Han C, Chen M, Zhang W et al (2015) Viscosity model for iron blast furnace slags in SiO2-Al2O3-CaO-MgO system. Steel Res Int 86:678–685

    CAS  Google Scholar 

  30. Duan WJ, Yu QB, Liu JX et al (2016) Research on characteristics and modelling estimation of molten BF slag viscosity in the process of slag waste heat recovery. Ironmak Steelmak 43:730–738

    CAS  Google Scholar 

  31. Gan L, Lai C (2014) A general viscosity model for molten blast furnace slag. Metall Mater Trans B 45:875–888

    CAS  Google Scholar 

  32. Frenkel J (1946) Kinetic theory of liquids. Clarendon Press, Oxford

    Google Scholar 

  33. Weymann HD (1962) On the hole theory of viscosity, compressibility, and expansivity of liquids. Kolloid-Zeitschrift & Zeitschrift Polym 181:131–137

    CAS  Google Scholar 

  34. Vogel H (1921) Das temperaturabhängigkeitsgesetz der viskosität von flüssigkeiten. Phys Z 22:645–646

    CAS  Google Scholar 

  35. Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc 8:339–355

    CAS  Google Scholar 

  36. Tammann G, Hesse W (1926) The dependence of viscosity upon the temperature of supercooled liquids. Z Anorg Allg Chem 156:245–257

    CAS  Google Scholar 

  37. Rijin C, Hongwei Ni, Xianwang Li et al (2012) Predicting viscosity of blast furnace slag based on BP neural network model: an experimental study. J Wuhan Univ Sci Technol 35:411–414

    Google Scholar 

  38. Jiang D, Zhang J, Wang Z et al (2020) A prediction model of blast furnace slag viscosity based on principal component analysis and K-nearest neighbor regression. JOM 72:3908–3916

    Google Scholar 

  39. Hanao M, Kawamoto M, Tanaka T, Nakamoto M (2006) Evaluation of viscosity of mold flux by using neural network computation. ISIJ Int 46:346–351

    CAS  Google Scholar 

  40. Tan Y, Wang H, Zhu X et al (2020) Film fragmentation mode: The most suitable way for centrifugal granulation of large flow rate molten blast slag towards high-efficiency waste heat recovery for industrialization. Appl Energy 276:115454

    Google Scholar 

  41. Neal RM (2007) Pattern recognition and machine learning. Technometrics 49:366–366

    Google Scholar 

  42. Haykin SS, Haykin SS (2009) Neural networks and learning machines, 3rd edn. Prentice Hall, New York

    Google Scholar 

  43. Karimi H, Yousefi F (2012) Application of artificial neural network–genetic algorithm (ANN–GA) to correlation of density in nanofluids. Fluid Phase Equilib 336:79–83

    CAS  Google Scholar 

  44. Hemmat Esfe M, Yan W-M, Afrand M et al (2016) Estimation of thermal conductivity of Al2O3/water (40%)–ethylene glycol (60%) by artificial neural network and correlation using experimental data. Int Commun Heat Mass Transfer 74:125–128

    CAS  Google Scholar 

  45. Ali A, Ilyas SU, Garg S et al (2020) Dynamic viscosity of Titania nanotubes dispersions in ethylene glycol/water-based nanofluids: experimental evaluation and predictions from empirical correlation and artificial neural network. Int Commun Heat Mass Transfer 118:104882

    CAS  Google Scholar 

  46. Paduszyński K, Domańska U (2014) Viscosity of ionic liquids: an extensive database and a new group contribution model based on a feed-forward artificial neural network. J Chem Inf Model 54:1311–1324

    Google Scholar 

  47. Valderrama JO, Muñoz JM, Rojas RE (2011) Viscosity of ionic liquids using the concept of mass connectivity and artificial neural networks. Korean J Chem Eng 28:1451–1457

    CAS  Google Scholar 

  48. Chen Z, Wang M, Wang H et al (2022) Designing structure–thermodynamics-informed artificial neural networks for surface tension prediction of multi-component molten slags. Metall Mater Trans B 53(4):2018–2029

    CAS  Google Scholar 

  49. Chen Z, Wang M, Meng Z et al (2021) Development of structure-informed artificial neural network for accurately modeling viscosity of multicomponent molten slags. Ceram Int 47:30691–30701

    CAS  Google Scholar 

  50. Kim H, Matsuura H, Tsukihashi F et al (2013) Effect of Al2O3 and CaO/SiO2 on the viscosity of calcium-silicate–based slags containing 10 mass pct MgO. Metall Mater Trans B 44:5–12

    CAS  Google Scholar 

  51. Fukuyama H, Hiroyuki Fukuyama YW (2009) High-temperature measurements of materials. Springer, Berlin

    Google Scholar 

  52. Brooks RF, Dinsdale AT, Quested PN (2005) The measurement of viscosity of alloys—a review of methods, data and models. Meas Sci Technol 16:354–362

    CAS  Google Scholar 

  53. Chen-guang BAI, Zhi-ming YAN, Zheng-de PANG et al (2020) Advances of measurement and calculation model of slag viscosity. Iron & Steel 55:27–37

    Google Scholar 

  54. Saito N, Hori N, Nakashima K, Mori K (2003) Viscosity of blast furnace type slags. Metall Mater Trans B 34:509–516

    Google Scholar 

  55. Shankar A, Görnerup M, Lahiri AK, Seetharaman S (2007) Experimental investigation of the viscosities in CaO-SiO2-MgO-Al2O3 and CaO-SiO2-MgO-Al2O3-TiO2 slags. Metall Mater Trans B 38:911–915

    Google Scholar 

  56. Dong X-J, Sun H-Y, She X-F et al (2014) Viscosity and viscosity estimation model of fully liquid slags in TiO2–Al2O3–CaO–SiO2 and TiO2-Al2O3–CaO–SiO2–MgO systems with high TiO2 concentration and low mass ratio of CaO to SiO2. Ironmak Steelmak 41:99–106

    CAS  Google Scholar 

  57. Tang X, Zhang Z, Guo M et al (2011) Viscosities behavior of CaO-SiO2-MgO-Al2O3 slag with low mass ratio of CaO to SiO2 and wide range of Al2O3 content. J Iron Steel Res Int 18:1–17

    Google Scholar 

  58. Zhen Y-L, Zhang G-H, Tang X-L, Chou K-C (2014) Influences of Al2O3/CaO and Na2O/CaO ratios on viscosities of CaO-Al2O3-SiO2-Na2O Melts. Metall and Mater Trans B 45:123–130

    CAS  Google Scholar 

  59. Liao JL, Li J, Wang XD, Zhang ZT (2012) Influence of TiO2 and basicity on viscosity of Ti bearing slag. Ironmak Steelmak 39:133–139

    CAS  Google Scholar 

  60. Kim JR, Lee YS, Min DJ et al (2004) Influence of MgO and Al2O3 contents on viscosity of blast furnace type slags containing FeO. ISIJ Int 44:1291–1297

    CAS  Google Scholar 

  61. Hurst HJ, Novak F, Patterson JH (1999) Viscosity measurements and empirical predictions for some model gasifier slags. Fuel 78:439–444

    CAS  Google Scholar 

  62. Urbain G, Bottinga Y, Richet P (1982) Viscosity of liquid silica, silicates and alumino-silicates. Geochim Cosmochim Acta 46:1061–1072

    CAS  Google Scholar 

  63. Ohno A, Ross HU (1963) Optimum slag composition for the blast-furnace smelting of titaniferous ores. Can Metall Q 2:259–279

    CAS  Google Scholar 

  64. Kozakevitch P (1960) Viscosité et éléments structuraux des aluminosilicates fondus : laitiers CaO-AI 2 O 3 -Sio 2 entre 1 600 et 2 100 °C. Rev Métall 57:149–160

    CAS  Google Scholar 

  65. Ma X, Chen M, Zhu J et al (2018) Properties of Low-MgO ironmaking blast furnace slags. ISIJ Int 58:1402–1405

    CAS  Google Scholar 

  66. Zhang S, Zhang X, Liu W et al (2014) Relationship between structure and viscosity of CaO-SiO2-Al2O3-MgO-TiO2 slag. J Non-Cryst Solids 402:214–222

    CAS  Google Scholar 

  67. Chen M, Zhang D, Kou M, Zhao B (2014) Viscosities of iron blast furnace slags. ISIJ Int 54:2025–2030

    CAS  Google Scholar 

  68. Park H, Park JY, Kim GH, Sohn I (2012) Effect of TiO2 on the viscosity and slag structure in blast furnace type slags. Steel Res Int 83:150–156

    CAS  Google Scholar 

  69. Sohn I, Wang W, Matsuura H et al (2012) Influence of TiO2 on the viscous behavior of calcium silicate melts containing 17 mass% Al2O3 and 10 mass% MgO. ISIJ Int 52:158–160

    CAS  Google Scholar 

  70. Song M, Shu Q, Sichen D (2011) Viscosities of the quaternary Al2O3-CaO-MgO-SiO2 slags. Steel Res Int 82:260–268

    CAS  Google Scholar 

  71. Kim H, Kim WH, Sohn I, Min DJ (2010) The effect of MgO on the viscosity of the CaO-SiO2-20wt%Al2O3-MgO slag system. Steel Res Int 81:261–264

    CAS  Google Scholar 

  72. Park JH, Kim H, Min DJ (2008) Novel approach to link between viscosity and structure of silicate melts via Darken’s excess stability function: focus on the amphoteric behavior of alumina. Metall Mater Trans B 39:150–153

    Google Scholar 

  73. Talapaneni T, Yedla N, Pal S, Sarkar S (2017) Experimental and theoretical studies on the viscosity-structure correlation for high alumina-silicate melts. Metall Mater Trans B 48:1450–1462

    CAS  Google Scholar 

  74. Yao L, Ren S, Liu G et al (2015) Study of the effect of the MgO/Al2O3 ratio on viscosity of blast furnace slag. Metall Res Technol 112:602

    Google Scholar 

  75. Pati A, Sahoo SK, Mishra B, Mohanty UK (2018) Viscosity of industrial blast furnace slag in Indian scenario. Trans Indian Inst Met 71:801–812

    CAS  Google Scholar 

  76. Chevrel MO, Giordano D, Potuzak M et al (2013) Physical properties of CaAl2Si2O8–CaMgSi2O6–FeO–Fe2O3 melts: analogues for extra-terrestrial basalt. Chem Geol 346:93–105

    CAS  Google Scholar 

  77. Lee YS, Min DJ, Jung SM, Yi SH (2004) Influence of basicity and FeO content on viscosity of blast furnace type slags containing FeO. ISIJ Int 44:1283–1290

    CAS  Google Scholar 

  78. Koshida T, Ogasawara T, Kishidaka H (1981) Viscosity, surface tension, and density of blast furnace slag and synthetic slags at manufacturing condition of hard granulated slag. Tetsu-to-Hagane 67:1491–1497

    CAS  Google Scholar 

  79. Kim WH, Sohn I, Min DJ (2010) A study on the viscous behaviour with K2O additions in the CaO-SiO2-Al2O3-MgO-K2O quinary slag system. Steel Res Int 81:735–741

    CAS  Google Scholar 

  80. Wu L, Gran J, Sichen D (2011) The effect of calcium fluoride on slag viscosity. Metall Mater Trans B 42:928–931

    CAS  Google Scholar 

  81. Qiu G, Chen L, Zhu J et al (2015) Effect of Cr2O3 addition on viscosity and structure of Ti-bearing blast furnace slag. ISIJ Int 55:1367–1376

    CAS  Google Scholar 

  82. Wang H, Chen Z, Liu L et al (2018) Roles of P2O5 addition on the viscosity and structure of CaO–SiO2–Al2O3–Na2O–P2O5 melts. ISIJ Int 58:1644–1649

    CAS  Google Scholar 

  83. Kekkonen M, Oghbasilasie H, Louhenkilpi S (2012) Viscosity models for molten slags

  84. Willman J (2021) Modern PyQt: create GUI applications for project management, computer vision, and data analysis. Apress, Berkeley

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (52206070), Innovative Research Group Project of National Natural Science Foundation of China (52021004) and Venture & Innovation Support Program for Chongqing Overseas Returnees (cx2021080).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junjun Wu or Xun Zhu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

The contributing editor for this article was Sharif Jahanshahi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 291 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Wu, J., Shao, Y. et al. ANN-Based Model to Predict the Viscosity of Molten Blast Furnace Slag at High Temperatures of > 1600 K. J. Sustain. Metall. 9, 1020–1032 (2023). https://doi.org/10.1007/s40831-023-00706-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-023-00706-0

Keywords

Navigation