Skip to main content
Log in

Recovery and Purification of Iridium from Secondary Resources: A Review

  • Review Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Iridium is widely used in high-temperature corrosion protection, catalytic oxidation, and electroluminescence owing to its excellent catalytic activity, corrosion, and oxidation resistance at high temperatures. Considering the high value of iridium-containing secondary resources, scarcity of iridium, and low recovery yield, it is important to enhance the ability to recover and purify iridium-containing materials. This paper provides an overview of the critical aspects of the high-purity iridium recovery process, including pretreatment, dissolution, and purification processes for iridium-containing materials. Given the difficult iridium dissolution, five effective dissolution methods including alloy fragmentation, molten acid leaching, molten salt chlorination, pressurized chlorination, and electrochemical dissolution are listed in detail to achieve the prerequisite of iridium extraction. For the further purification of iridium, precipitation purification, solvent extraction, and ion exchange are summarized. Notably, the factors affecting the purity and yield of iridium recovery in the precipitation purification process are analyzed in focus, which provides an important theoretical basis for realizing high-efficiency iridium purification. In addition, the extraction effects of different solvent extraction systems in the extraction purification process are compared in favor of an efficient extraction system. These results are expected to provide input for the establishment of an integrated high-purity iridium recovery system.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hunt LB (1987) A history of iridium. Platinum Met Rev 31(1):32–41

    CAS  Google Scholar 

  2. Ermakov AV, Naboichenko SS (2012) Iridium: production, consumption, and prospects. Russ J Non-Ferr Met+ 53(4):292–301.

  3. Li D, Li Q, Dong H, et al (2019) Research progress in the recovery of iridium from secondary resources. Conserv Util Mineral Resour 3173–3178.

  4. Galazka Z, Uecker R, Klimm D et al (2016) Scaling-up of bulk Β-Ga2o3 single crystals by the czochralski method. ECS J Solid State Sci Technol 6(2):Q3007–Q3011

    Google Scholar 

  5. Wei Y, Chen L, Cai H et al (2018) Study on high temperature oxidation performance of iridium and iridium-rhodium alloy. Precious Met 39(1):16–22

    CAS  Google Scholar 

  6. Haynes A, Maitlis P, Morris GE et al (2004) Promotion of iridium-catalyzed methanol carbonylation: mechanistic studies of the cativa process. J Am Chem Soc 126(9):2847–2861

    CAS  Google Scholar 

  7. Yoo C, Miller AJM (2021) Stepwise iodide-free methanol carbonylation via methyl acetate activation by pincer iridium complexes. J Am Chem Soc 143(32):12633–12643

    CAS  Google Scholar 

  8. Vos JG, Liu ZC, Speck FD et al (2019) Selectivity trends between oxygen evolution and chlorine evolution on iridium-based double perovskites in acidic media. Acs Catal 9(9):8561–8574

    CAS  Google Scholar 

  9. Oakton E, Lebedev D, Povia M et al (2017) Iro2-Tio2: a high-surface-area, active, and stable electrocatalyst for the oxygen evolution reaction. Acs Catal 7(4):2346–2352

    CAS  Google Scholar 

  10. Choy WC, Chan WK, Yuan Y (2014) Recent advances in transition metal complexes and light-management engineering in organic optoelectronic devices. Adv Mater 26(31):5368–5398

    CAS  Google Scholar 

  11. Li TY, Wu J, Wu ZG, et al (2018) Rational design of phosphorescent iridium(iii) complexes for emission color tunability and their applications in Oleds. Coordin Chem Rev 37455–37492.

  12. Burlakovs J, Vincevica-Gaile Z, Krievans M et al (2020) Platinum group elements in geosphere and anthroposphere: interplay among the global reserves. Minerals 10(6):558

    CAS  Google Scholar 

  13. Minke C, Suermann M, Bensmann B et al (2021) Is iridium demand a potential bottleneck in the realization of large-scale PEM water electrolysis? Int J Energy Res 46(46):23581–23590

    CAS  Google Scholar 

  14. Hirohata A, Huminiuc T, Sinclair J et al (2017) Development of antiferromagnetic Heusler alloys for the replacement of iridium as a critically raw material. J Phys D 50(44):443001

    Google Scholar 

  15. Dong HG, Zhao JC, Chen JL et al (2015) Recovery of platinum group metals from spent catalysts: a review. Int J Miner Process 145108–145113.

  16. Zhang J, Everson MP, Wallington TJ et al (2016) Assessing economic modulation of future critical materials use: the case of automotive-related platinum group metals. Environ Sci Technol 50(14):7687–7695

    CAS  Google Scholar 

  17. Cowley A (2022) Market report of platinum group metals by Johnson Matthey.

  18. Kiemel S, Smolinka T, Lehner F et al (2021) Critical materials for water electrolysers at the example of the energy transition in Germany. Int J Energy Res 45(7):9914–9935

    CAS  Google Scholar 

  19. Watari T, Nansai K, Nakajima K (2020) Review of critical metal dynamics to 2050 for 48 elements. Resour Conserv Recycl 155104669.

  20. Duan S, Zhao J, Wu Y et al (2021) Research progress on recovery technology of iridium containing waste. Precious Met 42(2):93–98

    CAS  Google Scholar 

  21. Tian Q, Li Y, Deng D et al (2015) Progress of precious metal recovery from waste electrical and electronic equipment. Precious Met 36(1):81–88

    CAS  Google Scholar 

  22. Zhang S, Ding Y, Liu B, et al (2017) Supply and demand of some critical metals and present status of their recycling in WEEE. Waste Manag 65113–65127.

  23. Christian H (2006) Recycling of electronic scrap at Umicore’s integrated metals smelter and refinery. Erzmetall 59(3):152–161

    Google Scholar 

  24. Tan C, Sun C (1984) Summary of iridium-molybdenum alloy waste separation and purification of iridium. J Instrum Meter 15(1):69–72

    Google Scholar 

  25. Du J (2020) Recovery of iridium from waste materials and residue. Chem Manag 22.

  26. He X, Liu W, Wu X et al (2010) Recovery of iridium from organic wastewater. Precious Met 31(2):6–9

    CAS  Google Scholar 

  27. Liu Y, Zhu L, Di J, et al (2018) Method for recovering iridium from iridium-containing zirconia. 201810685329.4

  28. Qian D, Liu S (1996) Method for enrichment, activation and dissolution of low-grade and refractory. Precious Metal Mater 95(5):24

  29. He X, Han S, Wu X et al (2010) A new technology for recovery Pt and Ir from Pt-Ir alloy scrap. Precious Met 31(3):56–59

    CAS  Google Scholar 

  30. Li F (2001) Separation and purification of platinum iridium alloys. Compr Util Resour China 000(008):12–14

    Google Scholar 

  31. Liu S (2013) Dissolution of rhodium iridium metals and other insolvable precious metals materials. Precious Met 34(S1):47–51

    Google Scholar 

  32. Knothe M, Schwarz K, Forster H (1991) Iridium recovery from compact metal scrap. J Less-Common Met 168(2):249–255

    CAS  Google Scholar 

  33. Heshmatpour B, Hesstand RL (1985) Recovery of iridium from scrap and residues. J Less-Common Met 1119–128.

  34. Zhang B, Li F (2006) Technoligical study on purification of iridium from waste iridium crucible. China Resour Compr Util 024(015):5–9

    Google Scholar 

  35. Yuan J, Gong J, Wang W, et al (2017) A method of extracting osmium, iridium and ruthenium and directly processing them into corresponding compounds. 201710657625.9

  36. Yi B, Chen J (2018) A method for recovering precious metals from osmium-iridium-ruthenium ore. 201810979518.2

  37. Chu G, Yang T, Chu S (2006) A pilot production for abstracting of precious metals from Osirru-Ore. Precious Met 26(2):1–4

    Google Scholar 

  38. Lee J, Kim Y (2011) Chemical dissolution of iridium powder using alkali fusion followed by high-temperature leaching. Mater Trans 52(11):2067–2070

    CAS  Google Scholar 

  39. Dong X, Wei G, Zhang W (1984) The application of molten salt catching in the extraction of platinum group metals. Precious Met 5(2):22–23

    Google Scholar 

  40. Zhang D, Yang T, Liu W, et al (2019) A kind of method for preparing chloroiridic acid. 201711042141.X

  41. Kauffman B, Myers RD (1978) The recovery of iridium from laboratory residues. J Less-Common Met 60(1):P1–P3

    CAS  Google Scholar 

  42. Wang J, Chen X, Zhou Y, et al (2018) A kind of fast dissolving method of insoluble metal iridium. 201810275541.3

  43. Zhou Y, Wang J, Chen X, et al (2018) A kind of quick preparation method of chloroiridic acid. 201810275460.3

  44. Liu Y, Fan X, Dong H et al (2013) Dissolving techniques of precious metal materials and their development. Precious Met 34(4):65–72

    Google Scholar 

  45. Box WD (2017) Dissolution of metals by AC electrolysis. Nucl Appl 2(4):299–303

    Google Scholar 

  46. Lv S, Liu B, Qin Y et al (2013) A kind of preparation method of iridium trichloride hydrate. CN201010290283

  47. Lv S, Wang S, Li T et al (2013) A kind of electrochemical dissolving method of iridium powder. 201010290275.5

  48. Wang S, Lv S, Zhang M et al (2020) A kind of method for continuous electrochemical dissolving of iridium powder. 201710399634

  49. Wang S, Lv S, Zhang M, et al (2018) A kind of electrochemical preparation method of chloroiridic acid. 201710405261

  50. Dwight AF (1970) Studies of the Iridium(III) and (IV)-chloride system in acid solution. J Inorg Nucl Chem 32(8):2731–2742

    Google Scholar 

  51. López SSS, Reyes-Cruz VE, Hilda-Rios-Reyes C, et al (2014) Thermodynamic study of iridium in Hcl: the effect of concentration. Adv Mater Res 976179–976183.

  52. Xu Z, Pan Y, Lu J et al (1979) Research report on separation and purification process of Ir-Rh40 alloy waste. Funct Mater 43–10+82.

  53. Ma Y, Sun S, Chen D et al (2011) Method for extracting iridium from iridium-containing material. 201010567367.3

  54. Chen J (1994) Classification and solubility regularity of insoluble coordination compounds of platinum group metals. Precious Met 15(1):15–24

    CAS  Google Scholar 

  55. Xu Z (1978) Process improvements for recycling iridium waste. Funct Mater 66–11.

  56. Chu J (1983) Metallurgical thermodynamic analysis of iridium extraction. Precious Met 4(4):12–19

    Google Scholar 

  57. Dong H, Zhao J, Pei H et al (2020) A kind of method for preparing 5N grade high-purity iridium powder. 202010122460.7

  58. Dong H, Zhao J, Cui H et al (2018) A kind of preparation method of high-purity iridium powder. 201810471481.2

  59. Yu J (2006) Precious metals separation and refining processes. Chemical Indrustry Press, Beijing

  60. Le MN, Lee MS, Senanayake G (2018) A short review of the separation of iridium and rhodium from hydrochloric acid solutions by solvent extraction. J Solut Chem 47(8):1373–1394

    CAS  Google Scholar 

  61. Michael JH, John FT (1983) The concentration of rhodium and iridium during the final stages of the platinum group metals refining process using the co-polymer poly[(N-dithiocarboxylato)-iminoethenehydrogenoiminioethene. Hydrometallurgy 11289–1295.

  62. Nguyen TH, Sonu CH, Lee MS (2016) Separation of Pt(IV), Pd(II), Rh(III) and Ir(IV) from concentrated hydrochloric acid solutions by solvent extraction. Hydrometallurgy 16471–16477.

  63. Kanert GA, Chow A (1974) Solvent extraction separation of rhodium from iridium with Tri-N-octylamine as a liquid anion-exchanger. Anal Chim Acta 69(2):355–361

    CAS  Google Scholar 

  64. Dziwinski E, Szymanowski J (1998) Composition of Cyanex® 923, Cyanex® 925, Cyanex® 921 and Topo. Solvent Extr Ion Exc 16(6):1515–1525

    CAS  Google Scholar 

  65. Yu J (2005) Solvent extraction chemisty of precious metals. Chemical Indrustry Press, Beijing

  66. Le MN, Lee MS (2017) Separation of Iridium(IV) and Rhodium(III) from hydrochloric acid solution by solvent extraction with Cyanex 921. Geosyst Eng 21(4):210–216

    Google Scholar 

  67. Faye GH, Inman WR (1963) A scheme for the separation of platinum, palladium, rhodium, and iridium by solvent extraction. Anal Chem 35(8):985–988

    CAS  Google Scholar 

  68. Berg EW, Senn Jr WL (1958) Separation of rhodium and iridium by multiple fractional extraction. Anal Chim Acta 19109–19113.

  69. Cao Q, Zhang W, Ruan M (1981) A new method for the separation of Rh and Ir by solvent extraction. Precious Met 2(3):1–10

    Google Scholar 

  70. Nguyen TH, Lee MS (2016) Effect of Hcl concentration on the oxidation of Lix 63 and the subsequent separation of Pd(II), Pt(IV), Ir(IV) and Rh(III) by solvent extraction. Korean J Metals Mater 54(10):768–774

    CAS  Google Scholar 

  71. Kedari S, Coll MT, Fortuny A et al (2005) Liquid-liquid extraction of Ir, Ru, and Rh from chloride solutions and their separation using different commercially available solvent extraction reagents. Sep Sci Technol 40(9):1927–1946

    CAS  Google Scholar 

  72. Le MN, Nguyen TH, Lee MS (2018) Comparison of separation behavior of Ir(IV) and Rh(III) between Tin(II) chloride and ascorbic acid as a reducing agent in the extraction with Cyanex 921 and Cyanex 301. Solvent Extr Ion Exc 36(3):272–285

    CAS  Google Scholar 

  73. Kedari CS, Coll MT, Fortuny A et al (2006) Recovery and partitioning of Ir(IV) and Ru(III) from chloride solutions by solvent extraction using Cyanex 923/kerosene. Hydrometallurgy 82(1–2):40–47

    CAS  Google Scholar 

  74. Preez JDGH, Viviers C (2003) The separation of rhodium and iridium. I. Active Centra and the Hcl Effect. Solvent Extr Ion Exc 21(6):815–826.

  75. Przeszlakowski S, Flieger A (1979) Extraction chromatography of noble metals with use of mixtures of hydrochloric and nitric acid as mobile phases. Talanta 26(12):1125–1133

    CAS  Google Scholar 

  76. Jha MK, Gupta D, Lee JC et al (2014) Solvent extraction of platinum using amine based extractants in different solutions: a review. Hydrometallurgy 14260–14269.

  77. Baghai A, Bowen HJM (1976) Separation of rhodium and iridium using silicone rubber foam treated with tri-N-octylamine. Analyst 101(1205):661–665

    CAS  Google Scholar 

  78. Goralska E, Coll MT, Fortuny A et al (2007) Studies on the selective separation of Ir(IV), Ru(III) and Rh(III) from chloride solutions using alamine 336 in kerosene. Solvent Extr Ion Exc 25(1):65–77

    CAS  Google Scholar 

  79. Jiang M, Wang X, Liu X et al (1986) A new method to separate pure iridium from a solution of mixed noble metals, and the speciation of relevant ions. Acta Sci Nat Univ Pekin 421–427.

  80. Nguyen TH, Sonu CH, Lee MS (2016) Separation of Ir(IV) and Rh(III) from strong hydrochloric acid solutions by solvent extraction with amines. J Ind Eng Chem 36245–36250.

  81. Gupta B, Singh I, Mahandra H (2014) Extraction and separation studies on Pt(IV), Ir(III) and Rh(III) using sulphur containing extractant. Sep Purif Technol 132102–132109.

  82. Liu WQ, Huang ZJ, Dong J (2013) Solvent extraction of Iridium(IV) with the petroleum sulfoxide. Asian J Chem 25(13):7131–7134

    CAS  Google Scholar 

  83. Dong Z, Gu G, Cheng F et al (1998) Extraction of Rlloditml (III) and Iridium (IV) by N—Hexyl Isooctylamide. Precious Met 3:34–37

    Google Scholar 

  84. Ilyas S, Kim H (2022) Recovery of platinum-group metals from an unconventional source of catalytic converter using pressure cyanide leaching and ionic liquid extraction. JOM 74(3):1020–1026

    CAS  Google Scholar 

  85. Lanaridi O, Schnurch M, Limbeck A et al (2022) Liquid- and solid-based separations employing ionic liquids for the recovery of platinum group metals typically encountered in catalytic converters: a review. Chemsuschem 15(6):e202102262

    CAS  Google Scholar 

  86. Asrami MR, Tran NN, Nigam KDP, et al (2021) Solvent extraction of metals: role of ionic liquids and microfluidics. Sep Purif Technol 262118289–262118304.

  87. Wongsawa T, Traiwongsa N, Pancharoen U et al (2020) A review of the recovery of precious metals using ionic liquid extractants in hydrometallurgical processes. Hydrometallurgy 198105488–198105510.

  88. Zheng HD, Ding YJ, Wen Q et al (2021) Separation and purification of platinum group metals from aqueous solution: recent developments and industrial applications. Resour Conserv Recycl 67105417–105434.

  89. Nikoloski AN, Ang KL (2013) Review of the application of ion exchange resins for the recovery of platinum-group metals from hydrochloric acid solutions. Miner Process Extr Metall Rev 35(6):369–389

    Google Scholar 

  90. Ya Y, Wang Q, Xiang Z et al (2017) Behavior and mechanism investigation of separating Pt and Ir by liquid-liquid extraction using a mixed [C6bet]Br/[C6mim][Ntf2] system. New J Chem 41(17):8985–8992

    Google Scholar 

  91. Fan M, Li SL, Deng H et al (2022) Separation and recovery of Iridium(IV) from simulated secondary resource leachate by extraction – electrodeposition. Sep Purif Technol 289120765–120776.

  92. Izatt RM, Izatt SR, Izatt NE et al (2015) Industrial applications of molecular recognition technology to separations of platinum group metals and selective removal of metal impurities from process streams. Green Chem 17(4):2236–2245

    CAS  Google Scholar 

  93. Izatt SR, Bruening RL, Izatt NE (2012) Metal separations and recovery in the mining industry. JOM 64(11):1279–1284

    CAS  Google Scholar 

  94. Ariga K, Ito H, Hill JP et al (2012) Molecular recognition: from solution science to nano/materials technology. Chem Soc Rev 41(17):5800–5835

    CAS  Google Scholar 

  95. Ezawa N, Izatt SR, Bruening RL et al (2017) Extraction and recovery of precious metals from plating solutions using molecular recognition technology. Trans IMF 78(6):238–242

    Google Scholar 

  96. Lakshmanan VI, Vijayan S (2018) A review on application of crown ethers in separation of rare earths and precious metals. Extraction 2018:1913–1930

    Google Scholar 

  97. Torrejos REC, Nisola GM, Min SH et al (2019) Aqueous synthesis of 14–15-membered crown ethers with mixed O N and S heteroatoms: experimental and theoretical binding studies with platinum-group metals. ChemPlusChem 84(2):210–221

    CAS  Google Scholar 

  98. Hossain KZ, Camagong CT, Honjo T (2001) Extraction of Iridium(IV) from hydrochloric acid media with crown ether in chloroform, and its determination by Icp-Aes. Fresenius’ J Anal Chem 6(369):543–545

    Google Scholar 

  99. Yakshin VV, Vilkova OM, Tananaev IG et al (2011) Selective extraction of platinum, iridium, and palladium with macrocyclic endo-receptors from hydrochloric acid solutions. Russ J Gen Chem+, 81(9):1966–1971.

  100. Sun PP, Lee MS (2011) Separation of Ir(IV) and Rh(III) from mixed chloride solutions by solvent extraction. Hydrometallurgy 105(3–4):334–340

    CAS  Google Scholar 

  101. Papaiconomou N, Billard I, Chainet E (2014) Extraction of Iridium(IV) from aqueous solutions using hydrophilic/hydrophobic ionic liquids. RSC Adv 4(89):48260–48266

    CAS  Google Scholar 

  102. Lee JC, Kurniawan, Hong HJ et al (2020) Separation of platinum, palladium and rhodium from aqueous solutions using ion exchange resin: a review. Sep Purif Technol 246116896–116928.

  103. Makishima A, Nakanishi M, Nakamura E (2001) A group separation method for ruthenium, palladium, rhenium, osmium, iridium, and platinum using their bromo complexes and an anion exchange resin. Anal Chem 73(21):5240–5246

    CAS  Google Scholar 

  104. Kramer J, Driessen WL, Koch KR et al (2002) Highly selective extraction of platinum group metals with silica-based (poly)amine ion exchangers applied to industrial metal refinery effluents. Hydrometallurgy 64(1):59–68

    CAS  Google Scholar 

  105. He X, He Y, Wu X et al (2015) A method of separating and purifying iridium. 201310216080.X

  106. Li H, Xiong Q, Guo J, et al (2017) A method for separating iridium from base metals and other platinum group metals. 201610774814.X

  107. Chen J, Nie X, Yang Z et al (1989) Separation and purification of iridium by hydrogen reduction under pressure. 1031399A

Download references

Acknowledgements

This work is financially supported by the research and development project of CNOOC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinshui Liu or Xin Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

The contributing editor for this article was Zhongwei Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, C., Quan, K., Han, Z. et al. Recovery and Purification of Iridium from Secondary Resources: A Review. J. Sustain. Metall. 9, 909–926 (2023). https://doi.org/10.1007/s40831-023-00697-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-023-00697-y

Keywords

Navigation