Skip to main content
Log in

Electrochemical Reduction of K2MoO4–Fe2O3 Binary Melts Using a Consumable Steel Electrode to Produce Ferromolybdenum Alloys

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Ferromolybdenum is widely used for high temperature alloys and stainless steels. Traditionally, the aluminothermic reaction is used to manufacture ferromolybdenum, but results in volatile species of molybdite (MoO3) reducing productivity. This work presents an electrochemical method using a consumable steel electrode under Ar to produce ferromolybdenum from electrolysis in the K2MoO4-10 mol%Fe2O3 binary melt to minimize the volatilization of molybdite at 1273 K. After completion of the electrochemical reaction, the produced ferromolybdenum was easily separated by using distilled water, where the average molar ratio of Fe/Mo was 1.5. At the optimal conditions of the present work, the current efficiency was estimated to be 70.77% with an energy consumption of 15,616.7 kWh/Fe–Mo ton in this system.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Prasad PM, Mankhand TR, Prasad AJK (1997) Molybdenum extraction process: an overview. Technical J 39:39

    CAS  Google Scholar 

  2. Roger FS, Richard B, Robert RD, John ML, Gerhard L, Hartmut M, Philip CHM, Mark SV, Douglas A, Gary G, Van R, Jamse CG, Stanley AT (2012) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co, Weinheim

    Google Scholar 

  3. Suri AK, Gupta CK (1997) Production of ferromolybdenum from Indian resources. NML Jamshedpur 831:71

    Google Scholar 

  4. Donald TH, Wayne LW (1970) Hydrogen Reduction of MoO3 at Temperatures between 300–400°C. Metall Mater Trans B 1:271

    Article  Google Scholar 

  5. Malyshev VV, Hab AI (2005) Electrodeposited molybdenum powders and coatings and their physicomechanical properties (a survey). Mater Sci 41:25

    Article  CAS  Google Scholar 

  6. Senderoff S, Brenner A (1954) The electrolytic preparation of molybdenum from fused salts: I. Electrolytic studies. J Electrochem Soc 101:16

    Article  CAS  Google Scholar 

  7. Senderoff S, Brenner A (1954) The electrolytic preparation of molybdenum from fused salts: II. The preparation of reduced molybdenum halides. J Electrochem Soc 101:28

    Article  CAS  Google Scholar 

  8. Senderoff S, Brenner A (1954) The electrolytic preparation of molybdenum from fused salts: III. Studies of electrode potentials. J Electrochem Soc 101:31

    Article  CAS  Google Scholar 

  9. Senderoff S, Labrie RJ (1955) Electrolytic preparation of molybdenum from fused salts: IV. Preparation of reduced molybdenum chlorides from molybdenite concentrate. J Electrochem Soc 102:77

    Article  CAS  Google Scholar 

  10. McCawley FX, Cattoir F, Sullivan T (1967) Electrodeposition of molybdenum from fused salts. Chem Abstr 66:131

    Google Scholar 

  11. Guminde RE, Cattoir FR, Sullivan TA. Molybdenum electrodeposition from fused chlorides. U.S. Bur. Mines. Report. Invest., No. 6580

  12. Baraboshkin AN, Saltykova NA, Talanova MI, Martemyanova ZS (1972) Structure of continuous molybdenum deposits obtained as a result of electrolysis of KCl-K3 MoCl6 melts. Proc Inst Electrochem 18:87

    Google Scholar 

  13. Baraboshkin AN, Valeev ZI, Talanova MI, Martemyanova ZS (1976) Electrodeposition of continuous layers of molybdenum-tungsten alloys from chloride melts. Proc Inst Electrochem 23:52

    Google Scholar 

  14. Baraboshkin AN, Saltykova NA, Semenov BG (1976) Electrodeposition of tungsten and its alloys from fluoride melts. Proc Inst Electrochem 24:23

    Google Scholar 

  15. Saltykova NA, Baraboshkin AN, Semenov BG (1976) On the causes of instability of electrodeposition of molybdenum from fluoride melts. Proc Inst Electrochem 24:32

    Google Scholar 

  16. Baraboshkin AN, Saltykova NA, Semenov BG (1978) Electrodeposition of molybdenum from oxide melts. Proc Inst Electrochem 28:63

    Google Scholar 

  17. Ramanujachary KV, Greenblatt M, Jones EB, McCarroll WH (1993) Synthesis and characterization of a new modification of the quasi-low-dimensional compound KMo4O6. J Solid State Chem 102:69

    Article  CAS  Google Scholar 

  18. Ledesert M, Labbe P, McCarroll WH, Leligny H, Raveau B (1993) La5Mo4O16: a new structural type related to perovskite with extremely short Mo-Mo bonds. J Solid State Chem 105:143

    Article  CAS  Google Scholar 

  19. Lommel B (1988) Kristallzüchtung und Charakterisierung von blauen Bronzen, Diploma thesis, Johann-Wolfgang-Goethe-Universität, Frankfurt

  20. Laurinavichyute VK, Vassiliev SY, Filatov AY, Levin EE, Tsirlina GA (2012) Electrochemistry of MoO3–K2MoO4 melts: a chance to control the nature of reduced molybdenum oxides. J Solid State Chem 116:3515

    Google Scholar 

  21. Chychko A, Teng L, Seetharaman S (2010) MoO3 evaporation studies from binary systems towards choice of Mo precursors in EAF. Steel Res Int 81:784

    Article  CAS  Google Scholar 

  22. Bard AJ, Faulkner LR (2022) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  23. Matsuda H, Ayabe Y (1955) The theory of the cathode—ray polarography of Randles-Sevcik. Zeitschrift für Elektrochemie Berichte der Bunsengesellschaft für Phys. Chemie 59:494

    Article  CAS  Google Scholar 

  24. Berzins T, Delahay P (1953) Oscillographic polarographic waves for the reversible deposition of metals on solid electrodes. J Am Chem Soc 75:555

    Article  CAS  Google Scholar 

  25. Daněk V, Chrenková M (1993) Structure of the melts of the system KF—K2Mo04. Chem Pap 47:339

    Google Scholar 

  26. Chase MW Jr (1998) J. Phys. Chem. Ref. Data. In: NIST-JANAF Themochemical Tables, 4th edn, Monograph, vol 9, pp 1–1951

Download references

Acknowledgements

This work was supported by the third stage of the Brain Korea 21 Plus Project of the Division of Creative Materials in 2018 and the Technology Innovation Program (Commercialization and development of new design on turbulent high temperature melting furnace (2000 tony pilot scale) and separation and (or) recovery of valuable metals from end of the xEV (ESS) battery pack) (20011183) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il Sohn.

Additional information

The contributing editor for this article was Hongmin Zhu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, K.W., Sohn, I. Electrochemical Reduction of K2MoO4–Fe2O3 Binary Melts Using a Consumable Steel Electrode to Produce Ferromolybdenum Alloys. J. Sustain. Metall. 9, 753–762 (2023). https://doi.org/10.1007/s40831-023-00684-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-023-00684-3

Keywords

Navigation