Skip to main content
Log in

Scale-Up Study of Deoxidation of Off-Grade Titanium Sponge Using Magnesium Metal Under Argon and Hydrogen Mixed Gas Atmosphere

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

To develop an efficient and cost-effective process for recycling off-grade titanium (Ti) sponge, the scale-up study of deoxidation of off-grade Ti sponge using magnesium (Mg) metal under argon (Ar) and hydrogen (H2) mixed gas was conducted. In the experiments, titanium hydride (TiH2) produced by the hydrogenation of an off-grade Ti sponge was used as the feedstock. The deoxidation of TiH2 was performed at 933 K for 12 h using Mg metal in magnesium chloride and potassium chloride molten salt under Ar and 10% H2 mixed gas atmosphere. The influence of production scale on the concentration of oxygen (O) in the obtained residues was investigated by increasing the amount of TiH2 feedstock up to 2500 g/batch. After the deoxidation process, a mixture of Ti and TiH2 was obtained, and the O concentration in the mixture decreased from 11750 to 1480 ppm under certain conditions. The results demonstrate that the deoxidation of TiH2 using Mg metal under Ar and H2 mixed gas can decrease the O concentration in an off-grade Ti sponge below 1800 ppm, even though the production scale increased under optimal conditions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Takeda O, Ouchi T, Okabe TH (2020) Recent progress in titanium extraction and recycling. Metall Mater Trans B 51:1315–1328. https://doi.org/10.1007/s11663-020-01898-6

    Article  CAS  Google Scholar 

  2. National Minerals Information Center (2021) Mineral commodity summaries 2021, vol 21. United States Geological Survey. https://doi.org/10.3133/mcs2021

  3. Sohn HS (2021) Current status of titanium recycling technology. Resour Recycl 30:26–34. https://doi.org/10.7844/kirr.2021.30.1.26. (in Korean)

    Article  CAS  Google Scholar 

  4. Marui Y, Kinoshita T, Takahashi K (2002) Development of a titanium material by utilizing off-grade titanium sponge. Honda R&D Tech Rev 14:149–156

    Google Scholar 

  5. Schmink M (2019) Ferrotitanium demand trends. In: Titanium USA 2019 conference, Mobile, AL, 22–25 Sep 2019

  6. Corby ND III (2020) Titanium scrap trends. In: Titanium Virtual 2020 conference, 13–14 Oct 2020

  7. Li CL, Narayana PL, Reddy NS, Choi SW, Yeom JT, Hong JK, Park CH (2019) Modeling hot deformation behavior of low-cost Ti-2Al-9.2Mo-2Fe beta titanium alloy using a deep neural network. J Mater Sci Technol 35:907–916. https://doi.org/10.1016/j.jmst.2018.11.018

    Article  CAS  Google Scholar 

  8. Lütjering G, Williams JC (2007) Titanium, engineering materials and processes, 2nd edn. Springer, Berlin

    Google Scholar 

  9. Zhang Y, Fang ZZ, Sun P, Zhang TY, Xia Y, Zhou CS, Huang Z (2016) Thermodynamic destabilization of Ti-O solid solution by H2 and deoxygenation of Ti using Mg. J Am Chem Soc 138:6916–6919. https://doi.org/10.1021/jacs.6b00845

    Article  CAS  Google Scholar 

  10. Xia Y, Fang ZZ, Zhang Y, Lefler H, Zhang T, Sun P, Huang Z (2017) Hydrogen assisted magnesiothermic reduction (HAMR) of commercial TiO2 to produce titanium powder with controlled morphology and particle Size. Mater Trans 58:355–360. https://doi.org/10.2320/matertrans.MK201628

    Article  CAS  Google Scholar 

  11. Dong Z, Xia Y, Guo X, Zhao J, Jiang L, Tian Q, Liu Y (2020) Direct reduction of upgraded titania slag by magnesium for making low-oxygen containing titanium alloy hydride powder. Powder Technol 368:160–169. https://doi.org/10.1016/j.powtec.2020.04.050

    Article  CAS  Google Scholar 

  12. Zheng C, Ouchi T, Iizuka A, Taninouchi Y, Okabe TH (2019) Deoxidation of titanium using Mg as deoxidant in MgCl2-YCl3 flux. Metall Mater Trans B 50:622–631. https://doi.org/10.1007/s11663-018-1494-2

    Article  CAS  Google Scholar 

  13. Jung JH, Lee SY, Park SH, Sohn HS (2021) Deoxidation of off-grade Ti scrap by molten Mg in YCl3-MgCl2 molten malt. Resour Recycl 30:46–52. https://doi.org/10.7844/kirr.2021.30.2.46. (in Korean)

    Article  CAS  Google Scholar 

  14. Kong L, Ouchi T, Okabe TH (2019) Direct deoxidation of Ti by Mg in MgCl2−HoCl3 flux. Mater Trans 60:2059–2068. https://doi.org/10.2320/matertrans.MT-M2019135

    Article  CAS  Google Scholar 

  15. Tanaka T, Ouchi T, Okabe TH (2020) Magnesiothermic reduction of TiO2 assisted by LaCl3. J Sustain Metall 6:667–679. https://doi.org/10.1007/s40831-020-00296-1

    Article  Google Scholar 

  16. Fisher RL (1990) Deoxidation of titanium and similar metals using a deoxidant in a molten metal carrier. US Patent 4923531A

  17. Okabe TH, Suzuki RO, Oishi T, Ono K (1991) Thermodynamic properties of dilute titanium-oxygen solid solution in beta phase. Mater Trans JIM 32:485–488. https://doi.org/10.2320/matertrans1989.32.485

    Article  CAS  Google Scholar 

  18. Cho GH, Kim T, Chae J, Lim JW (2020) Preparing low-oxygen titanium powder by calcium reductant from titanium hydride. Adv Powder Technol 31:3774–3780. https://doi.org/10.1016/j.apt.2020.07.020

    Article  CAS  Google Scholar 

  19. Oh JM, Roh KM, Lee BK, Suh CY, Kim W, Kwon H, Lim JW (2014) Preparation of low oxygen content alloy powder from Ti binary alloy scrap by hydrogenation–dehydrogenation and deoxidation process. J Alloys Compd 593:61–66. https://doi.org/10.1016/j.jallcom.2014.01.033

    Article  CAS  Google Scholar 

  20. Roh KM, Suh CY, Oh JM, Kim W, Kwon H, Lim JW (2014) Comparison of deoxidation capability for preparation of low oxygen content powder from TiNi alloy scraps. Powder Technol 253:266–269. https://doi.org/10.1016/j.powtec.2013.10.028

    Article  CAS  Google Scholar 

  21. Okabe TH, Oishi T, Ono K (1992) Preparation and characterization of extra-low-oxygen titanium. J Alloys Compd 184:43–56. https://doi.org/10.1016/0925-8388(92)90454-H

    Article  CAS  Google Scholar 

  22. Xia Y, Fang ZZ, Sun P, Zhang Y, Zhang T, Free M (2017) The effect of molten salt on oxygen removal from titanium and its alloys using calcium. J Mater Sci 52:4120–4128. https://doi.org/10.1007/s10853-016-0674-1

    Article  CAS  Google Scholar 

  23. Suzuki RO, Inoue S (2003) Calciothermic reduction of titanium oxide in molten CaCl2. Metall Mater Trans B 34:277–285. https://doi.org/10.1007/s11663-003-0073-2

    Article  Google Scholar 

  24. Okabe TH, Oda T, Mitsuda Y (2004) Titanium powder production by preform reduction process (PRP). J Alloys Compd 364:156–163. https://doi.org/10.1016/S0925-8388(03)00610-8

    Article  CAS  Google Scholar 

  25. Xia Y, Fang ZZ, Fan D, Sun P, Zhang Y, Zhu J (2018) Hydrogen enhanced thermodynamic properties and kinetics of calciothermic deoxygenation of titanium-oxygen solid solutions. Int J Hydrog Energy 43:11939–11951. https://doi.org/10.1016/j.ijhydene.2018.03.170

    Article  CAS  Google Scholar 

  26. Li B, Hou G, Jin H, Ding F, Hu P, Yuan F (2021) The deep deoxygenation behavior of fine hydrogenated Ti alloy powders. JOM 73:1188–1195. https://doi.org/10.1007/s11837-021-04571-8

    Article  CAS  Google Scholar 

  27. Okabe TH, Oishi T, Ono K (1992) Deoxidation of titanium aluminide by Ca-Al alloy under controlled aluminum activity. Metall Trans B 23:583–590. https://doi.org/10.1007/BF02649718

    Article  Google Scholar 

  28. Kong L, Ouchi T, Okabe TH (2021) Deoxidation of Ti using Ho in HoCl3 flux and determination of thermodynamic data of HoOCl. J Alloys Compd 863:156047. https://doi.org/10.1016/j.jallcom.2020.156047

    Article  CAS  Google Scholar 

  29. Tanaka T, Ouchi T, Okabe TH (2020) Lanthanothermic reduction of TiO2. Metall Mater Trans B 51:1485–1494. https://doi.org/10.1007/s11663-020-01860-6

    Article  CAS  Google Scholar 

  30. Tanaka T, Ouchi T, Okabe TH (2020) Yttriothermic reduction of TiO2 in molten salts. Mater Trans 61:1967–1973. https://doi.org/10.2320/matertrans.MT-M2020123

    Article  CAS  Google Scholar 

  31. Iizuka A, Ouchi T, Okabe TH (2020) Development of a new titanium powder sintering process with deoxidation reaction using yttrium metal. Mater Trans 61:758–765. https://doi.org/10.2320/matertrans.MT-M2019340

    Article  CAS  Google Scholar 

  32. Chen GZ, Fray DJ, Farthing TW (2000) Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature 407:361–364. https://doi.org/10.1038/35030069

    Article  CAS  Google Scholar 

  33. Chen GZ, Fray DJ, Farthing TW (2001) Cathodic deoxygenation of the alpha case on titanium and alloys in molten calcium chloride. Metall Mater Trans B 32:1041–1052. https://doi.org/10.1007/s11663-001-0093-8

    Article  Google Scholar 

  34. Tripathy PK, Gauthier M, Fray DJ (2007) Electrochemical deoxidation of titanium foam in molten calcium chloride. Metall Mater Trans B 32:893–900. https://doi.org/10.1007/s11663-007-9094-6

    Article  CAS  Google Scholar 

  35. Okabe TH, Hamanaka Y, Taninouchi Y (2016) Direct oxygen removal technique for recycling titanium using molten MgCl2 salt. Faraday Discuss 190:109–126. https://doi.org/10.1039/c5fd00229j

    Article  CAS  Google Scholar 

  36. Lim KH, Jeoung HJ, Lee TH, Yi KW, Kang J (2022) Deoxidation of off-grade titanium sponge using magnesium metal in argon and hydrogen mixed gas atmosphere. Metall Mater Trans B 53:220–231. https://doi.org/10.1007/s11663-021-02358-5

    Article  CAS  Google Scholar 

  37. Barin I (1995) Thermochemical data of pure substances. VCH Verlagsgesellschaft mbH, Weinheim

    Book  Google Scholar 

  38. Hatada N (2014) Chesta: Software for Creating Chemical Potential Diagram, version 3.2.6.9, https://n-hatada.github.io/chesta/

  39. Mah AD, Kelley KK, Gellert NL, King EG, O'Brien CJ (1957) Thermodynamic properties of titanium-oxygen solutions and compounds. United States Department of the Interior, Bureau of Mines, Washington, DC

  40. Taninouchi Y, Hamanaka Y, Okabe TH (2016) Electrochemical deoxidation of titanium and its alloy using molten magnesium chloride. Metall Mater Trans B 47:3394–3404. https://doi.org/10.1007/s11663-016-0792-9

    Article  CAS  Google Scholar 

  41. Massalski TB (1990) Binary alloy phase diagrams, 2nd edn. ASM International, Materials Park, OH

    Google Scholar 

  42. HSC Chemistry (2011) Chemical reaction and equilibrium software with extensive thermochemical database and flow sheet simulation (Vers. 7.11). Outokumpu Research Oy (Pori, Finland)

  43. Ito M, Morita K (2004) The solubility of MgO in molten MgCl2-CaCl2 salt. Mater Trans 45:2712–2718. https://doi.org/10.2320/matertrans.45.2712

    Article  CAS  Google Scholar 

  44. Zhang Y, Fang ZZ, Sun P, Xia Y, Free M, Huang Z, Lefler H, Zhang TY, Guo J (2017) Kinetically enhanced metallothermic redox of TiO2 by Mg in molten salt. Chem Eng J 327:169–182. https://doi.org/10.1016/j.cej.2017.06.060

    Article  CAS  Google Scholar 

  45. Boghosian S, Godø A, Mediaas H, Ravlo W, Østvold T (1991) Oxide complexes in alkali–alkaline–earth chloride melts. Acta Chem Scand 45:145–157. https://doi.org/10.3891/acta.chem.scand.45-0145

    Article  CAS  Google Scholar 

  46. Robertson IM, Schaffer GB (2010) Comparison of sintering of titanium and titanium hydride powders. Powder Metall 53:12–19. https://doi.org/10.1179/003258909X12450768327063

    Article  CAS  Google Scholar 

  47. Wang HT, Lefler M, Fang ZZ, Lei T, Fang SM, Zhang JM, Zhao Q (2010) Titanium and titanium alloy via sintering of TiH2. Key Eng Mater 436:157–163. https://doi.org/10.4028/www.scientific.net/KEM.436.157

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Hyeong-Jun Jeoung of the Korea Institute of Industrial Technology and Dr. Jin-Ho Yoon of the Institute for Advanced Engineering for their technical support. The authors are grateful to all members of the Geoanalysis Department of KIGAM for their technical assistance.

Funding

This study was supported by the Korea Evaluation Institute of Industrial Technology funded by the Ministry of Trade, Industry, and Energy of Korea (Project No.: 20010047, 21-9808) and Pusan National University Research Grant, 2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungshin Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The contributing editor for this article was Dimitrios Panias.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 1849 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, SH., Lim, KH., Na, H. et al. Scale-Up Study of Deoxidation of Off-Grade Titanium Sponge Using Magnesium Metal Under Argon and Hydrogen Mixed Gas Atmosphere. J. Sustain. Metall. 9, 497–510 (2023). https://doi.org/10.1007/s40831-023-00662-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-023-00662-9

Keywords

Navigation