Skip to main content
Log in

A Review on Stabilization of Ladle Furnace Slag-Powdering Issue

  • Review Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Ladle furnace (LF) slag plays an important role in modern steel making in terms of quality and productivity. The major challenge of using LF slag is its dusting problem. The polymorphic transformation of β-dicalcium silicate (monoclinic) to γ-dicalcium silicate (Orthorhombic) at about 450 °C is the leading cause of its disintegration. Hydration of slag, thermal shrinkage, and slower cooling are other reasons which are mainly responsible for slag powdering. The presence of dust particles due to disintegration not only creates a problem for its valorization but at the same time causes environmental issues. It becomes necessary for the steel makers to find out possible solutions to prevent such disintegration of slag. This review paper represents a detailed analysis of possible industrial solutions available for preventing of disintegration of LF slag and also will assist the steel operators for its effective utilization in major applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Pretorius E (2004) Fundamentals of Eaf and ladle slags, pp 1–73

  2. YiLFirim IZ, Prezzi M (2011) Chemical, mineralogical, and morphological properties of steel slag. Adv Civ Eng 1–13

  3. Yi H, Xu G, Cheng H (2012) An overview of utilization of steel slag. Proc Environ Sci 16:791–801

    Article  CAS  Google Scholar 

  4. Motz H, Geiseler J (2001) Products of steel slags an opportunity to save natural resources. Waste Manage 21:285–293

    Article  CAS  Google Scholar 

  5. Ozeki S (1997) Properties and usage of steel plant slag. Encosteel: steel for sustainable development. International Iron and Steel. Stockholm, pp 16–17

  6. Guzzon M, Mapelli C (2007) Recycling of ladle slag in the EAF: improvement of the foaming behavior and decrease of the environmental impact. Rev Met Paris 104(4):171–178

    Article  CAS  Google Scholar 

  7. Maghool F, Arulrajah A, Horpibulsuk S, Du YJ (2016) Laboratory evaluation of ladle furnace slag in unbound pavement-base/ subbase applications. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001724

    Article  Google Scholar 

  8. Bocci E (2018) Use of ladle furnace slag as filler in hot asphalt mixtures. Constr BuiLF Mater 161:156–164

    Article  CAS  Google Scholar 

  9. Makela M, Watkins G, Poykio R, Nurmesniemiet H, Dahl O (2012) Utilization of steel, pulp and paper industry solid residues in forest soil amendment: relevant physicochemical properties and heavy metal availability. J Hazard Mater 207–208:21–27

    Article  Google Scholar 

  10. Wu ZH, Zou ZS, Wang CZ (2005) Application of converter slags in agriculture. Multipurpose Util Min Resour (in Chinese) 6:25–28

    Google Scholar 

  11. Rađenović A, Malina J, Soflić T (2013) Characterization of ladle furnace slag from carbon steel production as a potential adsorbent. Adv Mater Sci Eng 2013:1–6

    Article  Google Scholar 

  12. Netinger I, Kesegic I, Guljas I (2011) The effect of high temperatures on the mechanical properties of concrete made with different types of aggregates. Fire Safety J 46:425–430

    Article  CAS  Google Scholar 

  13. Tsakiridis PE, Papadimitriou GD, Tsivilis S, Koroneos C (2008) Utilization of steel slag for Portland cement clinker production. J Hazard Mater 152:805–811

    Article  CAS  Google Scholar 

  14. Sun Y, Yao MS, Zhang JP, Yang G (2011) Indirect CO2 mineral sequestration by steelmaking slag with NH4Cl as leaching solution. Chem Eng J 173:437–445

    Article  CAS  Google Scholar 

  15. Eloneva S, Tei S, Salminen J, Fogelholma CJ, Zevenhoven R (2008) Fixation of CO2 by carbonating calcium derived from blast furnace slag. Energy 33:1461–1467

    Article  CAS  Google Scholar 

  16. Li LL, Li XY, Su XW, Ni W, Wang ZJ (2012) High strength of artificial reefs concrete made from steel slags. Met Mine (in Chinese) 3:158–162

    Google Scholar 

  17. Ghorai S, Mandal GK, Roy S, Minj RK, Agarwal A, Singh DP, Kumar A, Ramna RBV (2017) Treatment of LF slag to prevent powdering during cooling. J Min Metall Sec B-Metall 53:123–130

    Article  CAS  Google Scholar 

  18. Liu SZ (1994) Application of slag in steelmaking. Steelmaking (in Chinese) 6:54–59

    Google Scholar 

  19. Jiang CS, Ding QJ, Wang FZ, Li C (2002) Chemical and physical characteristics of steel slag and its utilization progress. Overseas BuiLF Mater Sci Technol (in Chinese) 23(3):3–5

    Google Scholar 

  20. Chen MZ, Wei W, Wang H, Wu JH, Wu SP, Investigation of durability of steel slag asphalt pavement. WorLF BuiLF Mater (in Chinese) 31(4): 36–38

  21. Sahoo PP, Nayak P, Ranjan R (2021) Prevention of ladle furnace slag disintegration through different slag additives. J Sustain Metall 7(1):115–125

    Article  Google Scholar 

  22. Lin Y, Luo Q, Yan B, Fabritius T, Shu Q (2020) Effect of B2O3 addition on mineralogical phases and leaching behavior of synthetic CaO–SiO2–MgO–Al2O3–CrOx slag. J Mater Cycles Waste Manag 22(4):1208–1217

    Article  CAS  Google Scholar 

  23. Branca TA, Colla V, Valentini R (2009) A way to reduce environmental impact of ladle furnace slag. Ironmak Steelmak 36(8):597–602

    Article  CAS  Google Scholar 

  24. Engström F, Pontikes Y, Geysen D, Jones PT, Björkman B, Blanpain B (2011) Review: hot stage engineering to improve slag valorisation options. In: 2nd int. slag valoris. symp., pp 231–250

  25. Sheshukov OY, Nekrasov IV, Mikheenkov MA, Egiazaryan DK, Lobanov DA (2017) Stabilization of refining slag by adjusting its phase composition and giving it the properties of mineral binders. Refract Ind Ceram 58(3):324–330

    Article  Google Scholar 

  26. Saidani S, Smith A, El Hafiane Y, Tahar LB (2018) Re-examination of the β→γ transformation of Ca2SiO4. J Eur Ceram Soc 38(14):4756–4767

    Article  CAS  Google Scholar 

  27. Iacobescu RI et al (2015) Ladle metallurgy stainless steel slag as a raw material in Ordinary Portland Cement production: a possibility for industrial symbiosis. J Clean Prod 112(1):872–881

    Google Scholar 

  28. Maiti SC, Ghoroi C (2017) Influence of catalytic nano-additive for stabilization of β-dicalcium silicate and its hydration rate with different electrolytes. Cem Concr Res 98:111–121

    Article  CAS  Google Scholar 

  29. Behera N, Raddadi A, Ahmad S, Tewari N, Zeghaibi O (2016) Use of Al-killed ladle furnace slag in Si-killed steel process to reduce lime consumption improve slag fluidity. In: Proceedings of the 10th international conference on Advances in molten slags fluxes and salts, pp 1031–1039

  30. Durinck D, Jones PT, Arnout S, Blanpain B, Stainless steel slag valorisation: on volume stability and disintegration. slag-valorisation-symposium.eu., pp 81–91

  31. Manso JM, Losanez M, Polanco JA, Gonzalez JJ (2005) Ladle furnace slag in construction. J Mater Civ Eng 17(5):513–518

    Article  CAS  Google Scholar 

  32. Nicolae M, Vılciu I, Zaman F (2007) X-ray diffraction analysis of steel slag and blast furnace slag viewing their use for road construction. UPB Sci Bull Series B 69(2):99–108

    CAS  Google Scholar 

  33. Qian GR, Sun DD, Tay JH, Lai ZY (2002) Hydrothermal reaction and autoclave stability of Mg bearing RO phase in steel slag. Br Ceram Trans 101(4):159–164

    Article  CAS  Google Scholar 

  34. Tossavainen M, Engstrom F, Yang Q, Menad N, Larsson ML, Bjorkman B (2007) Characteristics of steel slag under different cooling conditions. Waste Manage 27(10):1335–1344

    Article  CAS  Google Scholar 

  35. Memoli F, Mapelli C, Guzzon M (2007) Recycling of ladle slag in the EAF: a way to improve environmental conditions and reduce variable costs in steel plants. Iron Steel Tech 4:68–76

    CAS  Google Scholar 

  36. Varanasi SS, More VMR, Rao MBV, Alli SR, Tangudu AK, Santanu D (2019) Recycling ladle furnace slag as flux in steelmaking: a review. J Sustain Metall 5(4):449–462

    Article  Google Scholar 

  37. Bharati S et al (2019) From waste to wealth: recycling the secondary resource from steel ladle as a flux in Si-killed steelmaking process. Ironmak Steelmak 46(8):794–799

    Article  CAS  Google Scholar 

  38. Aminorroaya S, Edris H, Tohidi A, Parsi J, Zamani B, (2004) Recycling of ladle furnace slags. In: 2nd international conference on process development in iron and steel making (SCANMET II) Sweden MEFOS, pp 379–384

  39. Seki A, Aso Y, Okubo M, Sudo F, Ishizaka K (1986) Development of dusting prevention stabilizer for stainless steel slag. Kawasaki Steel Giho 18:16–21

    Google Scholar 

  40. Gollapalli V, Rao S, Chenna T, Borra R, Soumya S (2020) Investigation on stabilization of ladle furnace slag with different additives. J Sustain Metall 6:121–131

    Article  Google Scholar 

  41. Fletcher JG, Glasser FP (1993) Phase relations in the system CaO-B2O3-SiO2. J Mater Sci 28(10):2677–2686

    Article  CAS  Google Scholar 

  42. Chan CJ, Kriven WM, Young JF (1992) Physical stabilization of the β→γ transformation in dicalcium silicate. J Am Ceram Soc 75(6):1621–1627

    Article  CAS  Google Scholar 

  43. Yan P, Nie P, Huang S, Blanpain B, Guo M (2014) Sulphide capacity and mineralogy of BaO and B2O3 modified CaO-Al2O3 top slag. ISIJ Int 54(7):1570–1577

    Article  CAS  Google Scholar 

  44. Durinck D, Arnout S, Mertens G, Boydens E, Jones PT, Elsen J, Blanpain B, Wollants P (2008) Borate distribution in stabilized stainless-steel slag. J Am Ceram Soc 91(2):548–554

    Article  CAS  Google Scholar 

  45. Pontikes Y, Jones PT, Geysen D, Blanpain B (2010) Options to prevent dicalcium silicate-driven disintegration of stainless steel slags. Arch Metall Mater 55(4):1167–1172

    Article  CAS  Google Scholar 

  46. Kim YJ, Nettleship I, Kriven WM (1992) Phase transformations in dicalcium silicate: II, TEM studies of crystallography, microstructure, and mechanisms. J Am Ceram Soc 75(9):2407–2419

    Article  CAS  Google Scholar 

  47. Ghose A, Chopra S, Young JF (1983) Microstructural characterization of doped dicalcium silicate polymorphs. J Mater Sci 18(10):2905–2914

    Article  CAS  Google Scholar 

  48. Christogerou A, Kavas T, Pontikes Y (2009) Use of boron wastes in the production of heavy clay ceramics. Ceram Int 35(1):447–452

    Article  CAS  Google Scholar 

  49. Geysen D, Huang S, Lhoëst P, Cotton A (2010) Boron in stainless steel slags. In the 6th European Slag Conference. Madri, Spain

    Google Scholar 

  50. Huang S, Guo M, Jones PT, Blanpain B (2013) Fayalite slag modified stainless steel AOD-slag. IN: Proceedings of third international slag valorization symposium, pp 107–110

  51. Kitamura S, Maruoka N (2009) Modification of stainless steel refining slag through mixing with nonferrous smelting slag. In: Jones PT, Geysen D, Guo M, Blanpain B (eds) First international slag valorization symposium, pp 140–143

  52. Sakamoto N (2001) Effects of MgO-based glass addition on the dusting of stainless steel slag (development of control process of stainless steel slag dusting-3). Curr Adv Mater Process 14(4):939

    Google Scholar 

  53. Yang Q, Nedar L, Engstrom F, He M (2006) Treatments of AOD slag to produce aggregates for road construction. Aistech 2006. Ohio, USA, pp 573–583

    Google Scholar 

  54. Zhao H, Qi Y, Shi Y, Na X, Feng H (2013) Mechanism and prevention of disintegration of AOD stainless steel slag. J Iron Steel Res Int 20:26–30

    Article  CAS  Google Scholar 

  55. Kuhn M, Drissen P, Schrey H (2000) Treatment of liquid steel slags. In: Proceedings of the 2nd European slag conference

  56. Parker TW, Ryder WM (1942) Investigations on ‘falling’ blast furnace slag. J Iron Steel Inst 146:21–51

    Google Scholar 

  57. Harada G, Yen T, Tomari M (1979) Process for treating molten steel slag with red mud from the aluminum industry. US Patent, 4(179): 279

  58. Iacobescu RI, Malfliet A, Machiels L, Pontikes Y (2014) (2014) “Stabilisation and microstructural modification of stainless steel converter slag by addition of an alumina rich by-product.” Waste Biomass Valorization 5(3):343–353

    Article  CAS  Google Scholar 

  59. Mudersbach D, Kuehn M, Geiseler J, Koch K (2009) “Chrome immobilisation in EAF-slags from high-alloy steelmaking: tests at FEhS institute and development of an operational slag treatment process”, 1st International slag valorisation symposium. Belgium, Leuven, pp 101–110

    Google Scholar 

  60. Eriksson J, Björkman B (2004) MgO modifcation of slag from stainless steelmaking. In: International conference on molten slags fluxes and salts VII, Cape Town, pp 455–459

  61. Yang Q, Engstrom F (2009) Modification study of steel slag to prevent the slag disintegration after metal recovery and to enhance slag utilization. In: 8th international conference on molten slags, fluxes and salts—MOLTEN 2009, pp 34–41

  62. Stark J, Müller A, Schrader R, Rumpler KR (1980) Contributions to active belite cement, part 2: influence of cooling conditions of cement strength. Silikattechnik 31(2):50–52

    CAS  Google Scholar 

  63. Keith K, Craig P, Manning J (2001) Process for stabilizing and reusing ladle furnace slag. US Patent 6,189,818 B

  64. Kriskova L, Pontikes Υ, Lietaert Κ, Pandelaers L (2011) “Effect of chemical composition and cooling rate on mineralogy and hydraulic properties of synthetic AOD slag”, to be presented in 12th International Conference and Exhibition of the European Ceramic Society. Stockholm, Sweden, pp 1–4

    Google Scholar 

  65. Erdmann R, Kesseler K, Mudersbach D, Kuehn M (2007) A new product: highly valuable slag from the OxyCup. Euroslag V - European Slag Conference, Luxembourg, pp 89–106

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Kumar.

Additional information

The contributing editor for this article was Il Sohn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, A., Chanda, P., Tripathy, P.K. et al. A Review on Stabilization of Ladle Furnace Slag-Powdering Issue. J. Sustain. Metall. 8, 1435–1449 (2022). https://doi.org/10.1007/s40831-022-00597-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-022-00597-7

Keywords

Navigation